Spaces:
Sleeping
Sleeping
riyadifirman
commited on
Commit
•
c035d29
1
Parent(s):
8ed8bb2
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import torch
|
|
3 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
4 |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
5 |
from PIL import Image
|
|
|
6 |
|
7 |
# Load model and processor
|
8 |
model_name = "riyadifirman/klasifikasiburung"
|
@@ -18,16 +19,30 @@ transform = Compose([
|
|
18 |
])
|
19 |
|
20 |
def predict(image):
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Create Gradio interface
|
29 |
-
# In newer versions of Gradio, 'inputs' and 'outputs' are directly
|
30 |
-
# specified within the gr.Interface constructor.
|
31 |
interface = gr.Interface(
|
32 |
fn=predict,
|
33 |
inputs=gr.Image(type="numpy"), # Changed from gr.inputs.Image to gr.Image
|
@@ -36,5 +51,8 @@ interface = gr.Interface(
|
|
36 |
description="Upload an image of a bird to classify it."
|
37 |
)
|
38 |
|
|
|
|
|
39 |
if __name__ == "__main__":
|
40 |
-
interface.launch()
|
|
|
|
3 |
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
4 |
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
5 |
from PIL import Image
|
6 |
+
import traceback
|
7 |
|
8 |
# Load model and processor
|
9 |
model_name = "riyadifirman/klasifikasiburung"
|
|
|
19 |
])
|
20 |
|
21 |
def predict(image):
|
22 |
+
try:
|
23 |
+
image = Image.fromarray(image)
|
24 |
+
inputs = transform(image).unsqueeze(0)
|
25 |
+
outputs = model(inputs)
|
26 |
+
logits = outputs.logits
|
27 |
+
predicted_class_idx = logits.argmax(-1).item()
|
28 |
+
return processor.decode(predicted_class_idx)
|
29 |
+
except Exception as e:
|
30 |
+
print("An error occurred:", e)
|
31 |
+
print(traceback.format_exc())
|
32 |
+
return "An error occurred while processing your request."
|
33 |
+
|
34 |
+
def predict_function(input_data):
|
35 |
+
try:
|
36 |
+
# model
|
37 |
+
output = f"Processed input: {input_data}" # Gantilah dengan model
|
38 |
+
return output
|
39 |
+
except Exception as e:
|
40 |
+
# Menampilkan error
|
41 |
+
print("An error occurred:", e)
|
42 |
+
print(traceback.format_exc()) # Ini akan print error secara detail
|
43 |
+
return "An error occurred while processing your request."
|
44 |
|
45 |
# Create Gradio interface
|
|
|
|
|
46 |
interface = gr.Interface(
|
47 |
fn=predict,
|
48 |
inputs=gr.Image(type="numpy"), # Changed from gr.inputs.Image to gr.Image
|
|
|
51 |
description="Upload an image of a bird to classify it."
|
52 |
)
|
53 |
|
54 |
+
iface = gr.Interface(fn=predict_function, inputs="text", outputs="text")
|
55 |
+
|
56 |
if __name__ == "__main__":
|
57 |
+
interface.launch()
|
58 |
+
iface.launch()
|