Spaces:
Sleeping
Sleeping
import os | |
import sys | |
import json | |
import logging | |
import warnings | |
from pathlib import Path | |
from typing import List, Dict, Any, Optional, Tuple | |
import hashlib | |
import pickle | |
from datetime import datetime | |
import time | |
import asyncio | |
from concurrent.futures import ThreadPoolExecutor | |
# Suppress warnings for cleaner output | |
warnings.filterwarnings("ignore") | |
# Core dependencies | |
import gradio as gr | |
import numpy as np | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer | |
import faiss | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForCausalLM, | |
BitsAndBytesConfig, | |
pipeline | |
) | |
# Document processing | |
from llama_index.core import Document, VectorStoreIndex, Settings | |
from llama_index.core.node_parser import SentenceSplitter | |
from llama_index.vector_stores.faiss import FaissVectorStore | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
from llama_index.core import StorageContext | |
# PDF processing | |
from unstructured.partition.pdf import partition_pdf | |
from llama_index.core.schema import Document as LlamaDocument | |
# Medical knowledge validation | |
import re | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
class MedicalFactChecker: | |
"""Enhanced medical fact checker with faster validation""" | |
def __init__(self): | |
self.medical_facts = self._load_medical_facts() | |
self.contraindications = self._load_contraindications() | |
self.dosage_patterns = self._compile_dosage_patterns() | |
self.definitive_patterns = [ | |
re.compile(r, re.IGNORECASE) for r in [ | |
r'always\s+(?:use|take|apply)', | |
r'never\s+(?:use|take|apply)', | |
r'will\s+(?:cure|heal|fix)', | |
r'guaranteed\s+to', | |
r'completely\s+(?:safe|effective)' | |
] | |
] | |
def _load_medical_facts(self) -> Dict[str, Any]: | |
"""Pre-loaded medical facts for Gaza context""" | |
return { | |
"burn_treatment": { | |
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes", | |
"no_ice": "Never apply ice directly to burns", | |
"clean_cloth": "Cover with clean, dry cloth if available" | |
}, | |
"wound_care": { | |
"pressure": "Apply direct pressure to control bleeding", | |
"elevation": "Elevate injured limb if possible", | |
"clean_hands": "Clean hands before treating wounds when possible" | |
}, | |
"infection_signs": { | |
"redness": "Increasing redness around wound", | |
"warmth": "Increased warmth at wound site", | |
"pus": "Yellow or green discharge", | |
"fever": "Fever may indicate systemic infection" | |
} | |
} | |
def _load_contraindications(self) -> Dict[str, List[str]]: | |
"""Pre-loaded contraindications for common treatments""" | |
return { | |
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"], | |
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"], | |
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"], | |
"tourniquets": ["non-life-threatening bleeding", "without proper training"] | |
} | |
def _compile_dosage_patterns(self) -> List[re.Pattern]: | |
"""Pre-compiled dosage patterns""" | |
patterns = [ | |
r'\d+\s*mg\b', # milligrams | |
r'\d+\s*g\b', # grams | |
r'\d+\s*ml\b', # milliliters | |
r'\d+\s*tablets?\b', # tablets | |
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency | |
r'every\s+\d+\s+hours?\b' # intervals | |
] | |
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns] | |
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]: | |
"""Enhanced medical accuracy check with Gaza-specific considerations""" | |
issues = [] | |
warnings = [] | |
accuracy_score = 0.0 | |
# Check for contraindications (faster keyword matching) | |
response_lower = response.lower() | |
for medication, contra_list in self.contraindications.items(): | |
if medication in response_lower: | |
for contra in contra_list: | |
if any(word in response_lower for word in contra.split()): | |
issues.append(f"Potential contraindication: {medication} with {contra}") | |
accuracy_score -= 0.3 | |
break | |
# Context alignment using Jaccard similarity | |
if context: | |
resp_words = set(response_lower.split()) | |
ctx_words = set(context.lower().split()) | |
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0 | |
if context_similarity < 0.5: # Lowered threshold for Gaza context | |
warnings.append(f"Low context similarity: {context_similarity:.2f}") | |
accuracy_score -= 0.1 | |
else: | |
context_similarity = 0.0 | |
# Gaza-specific resource checks | |
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"] | |
if any(resource in response_lower for resource in gaza_resources): | |
warnings.append("Consider resource limitations in Gaza context") | |
accuracy_score -= 0.05 | |
# Unsupported claims check | |
for pattern in self.definitive_patterns: | |
if pattern.search(response): | |
issues.append(f"Unsupported definitive claim detected") | |
accuracy_score -= 0.4 | |
break | |
# Dosage validation | |
for pattern in self.dosage_patterns: | |
if pattern.search(response): | |
warnings.append("Dosage detected - verify with professional") | |
accuracy_score -= 0.1 | |
break | |
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score)) | |
return { | |
"confidence_score": confidence_score, | |
"issues": issues, | |
"warnings": warnings, | |
"context_similarity": context_similarity, | |
"is_safe": len(issues) == 0 and confidence_score > 0.5 | |
} | |
class EnhancedGazaKnowledgeBase: | |
"""Enhanced knowledge base with better embeddings and indexing""" | |
def __init__(self, data_dir: str = "./data"): | |
self.data_dir = Path(data_dir) | |
self.embedding_model = None | |
self.vector_store = None | |
self.index = None | |
self.chunk_metadata = [] | |
self.index_path = self.data_dir / "enhanced_vector_store" | |
# Enhanced medical priorities for Gaza context | |
self.medical_priorities = { | |
"trauma": ["gunshot", "blast", "burns?", "fracture", "shrapnel", "explosion"], | |
"infectious": ["cholera", "dysentery", "infection", "sepsis", "wound infection"], | |
"chronic": ["diabetes", "hypertension", "malnutrition", "kidney", "heart"], | |
"emergency": ["cardiac", "bleeding", "airway", "unconscious", "shock"], | |
"gaza_specific": ["siege", "blockade", "limited supplies", "no electricity", "water shortage"] | |
} | |
def initialize(self): | |
"""Enhanced initialization with better embedding model""" | |
if not self.index_path.exists(): | |
self.index_path.mkdir(parents=True) | |
# Use a more powerful medical embedding model | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
# Try to use a medical-specific embedding model, fallback to general model | |
try: | |
# First try a medical-specific model (if available) | |
self.embedding_model = HuggingFaceEmbedding( | |
model_name="sentence-transformers/all-mpnet-base-v2", # Higher dimension (768) | |
device=device, | |
embed_batch_size=4 | |
) | |
logger.info("Using all-mpnet-base-v2 (768-dim) embedding model") | |
except Exception as e: | |
logger.warning(f"Failed to load preferred model, using fallback: {e}") | |
self.embedding_model = HuggingFaceEmbedding( | |
model_name="sentence-transformers/all-MiniLM-L6-v2", | |
device=device, | |
embed_batch_size=4 | |
) | |
logger.info("Using all-MiniLM-L6-v2 (384-dim) embedding model") | |
# Configure global settings | |
Settings.embed_model = self.embedding_model | |
Settings.chunk_size = 512 # Increased chunk size for better context | |
Settings.chunk_overlap = 50 # Increased overlap | |
# Check for existing index | |
if (self.index_path / "index.faiss").exists() and (self.index_path / "docstore.json").exists(): | |
self._load_vector_store() | |
else: | |
self._create_vector_store() | |
def _batch_embed_with_retry(self, texts, batch_size=16, max_retries=3, delay=2): | |
""" | |
Embed texts in batches with retry fallback and logging | |
""" | |
embeddings = [] | |
for i in range(0, len(texts), batch_size): | |
batch = texts[i:i+batch_size] | |
for attempt in range(max_retries): | |
try: | |
batch_embeddings = self.embedding_model.get_text_embedding_batch(batch) | |
embeddings.extend(batch_embeddings) | |
break # success | |
except Exception as e: | |
if attempt < max_retries - 1: | |
logger.warning(f"Batch {i}-{i+len(batch)} failed (attempt {attempt+1}): {e}. Retrying...") | |
time.sleep(delay * (attempt + 1)) | |
else: | |
logger.error(f"β Final failure embedding batch {i}-{i+len(batch)}: {e}") | |
for text in batch: | |
try: | |
embeddings.append(self.embedding_model.get_text_embedding(text)) | |
except Exception as sub_e: | |
logger.error(f"Failed to embed single text: {sub_e} β {text[:60]}...") | |
return embeddings | |
def _load_vector_store(self): | |
"""Load existing vector store with error handling""" | |
try: | |
# Load the FAISS index directly | |
faiss_index = faiss.read_index(str(self.index_path / "index.faiss")) | |
vector_store = FaissVectorStore(faiss_index=faiss_index) | |
# Create storage context | |
storage_context = StorageContext.from_defaults( | |
vector_store=vector_store, | |
persist_dir=str(self.index_path) | |
) | |
# Load the index | |
self.index = VectorStoreIndex.load( | |
storage_context=storage_context | |
) | |
# Load metadata | |
metadata_path = self.index_path / "metadata.pkl" | |
if metadata_path.exists(): | |
with open(metadata_path, 'rb') as f: | |
self.chunk_metadata = pickle.load(f) | |
logger.info(f"Loaded existing vector store with {len(self.chunk_metadata)} chunks") | |
except Exception as e: | |
logger.error(f"Error loading vector store: {e}") | |
# Fallback to creating new store if loading fails | |
self._create_vector_store() | |
def _create_vector_store(self): | |
"""Create enhanced vector store with IVF indexing""" | |
documents = self._load_documents() | |
if not documents: | |
logger.warning("No documents found. Creating empty index") | |
self.chunk_metadata = [] | |
return | |
# Determine embedding dimension | |
try: | |
test_embedding = self.embedding_model.get_text_embedding("test") | |
dimension = len(test_embedding) | |
logger.info(f"Embedding dimension: {dimension}") | |
except Exception as e: | |
logger.error(f"Failed to determine embedding dimension: {e}") | |
dimension = 768 # Default for all-mpnet-base-v2 | |
# Create enhanced FAISS index with IVF for better performance | |
try: | |
# For small datasets, use flat index; for larger ones, use IVF | |
if len(documents) < 1000: | |
faiss_index = faiss.IndexFlatL2(dimension) | |
logger.info("Using IndexFlatL2 for small dataset") | |
else: | |
# Use IVF with reasonable number of clusters | |
nlist = min(100, len(documents) // 10) # Adaptive cluster count | |
quantizer = faiss.IndexFlatL2(dimension) | |
faiss_index = faiss.IndexIVFFlat(quantizer, dimension, nlist) | |
logger.info(f"Using IndexIVFFlat with {nlist} clusters") | |
except Exception as e: | |
logger.error(f"Failed to create enhanced index, using flat: {e}") | |
faiss_index = faiss.IndexFlatL2(dimension) | |
vector_store = FaissVectorStore(faiss_index=faiss_index) | |
# Create storage context | |
storage_context = StorageContext.from_defaults( | |
vector_store=vector_store | |
) | |
# Configure node parser with enhanced settings | |
parser = SentenceSplitter( | |
chunk_size=Settings.chunk_size, | |
chunk_overlap=Settings.chunk_overlap, | |
include_prev_next_rel=True # Include relationships for better context | |
) | |
# Create index using global settings | |
self.index = VectorStoreIndex.from_documents( | |
documents, | |
storage_context=storage_context, | |
transformations=[parser], | |
show_progress=True | |
) | |
# Train IVF index if needed | |
if hasattr(faiss_index, 'train') and not faiss_index.is_trained: | |
logger.info("Training IVF index...") | |
# Get some embeddings for training | |
sample_texts = [doc.text[:500] for doc in documents[:100]] # Sample for training | |
sample_embeddings = np.array(self._batch_embed_with_retry(sample_texts, batch_size=16)).astype('float32') | |
faiss_index.train(sample_embeddings) | |
logger.info("IVF index training completed") | |
# Save metadata | |
self.chunk_metadata = [ | |
{"text": node.text, "source": node.metadata.get("source", "unknown")} | |
for node in self.index.docstore.docs.values() | |
] | |
# Persist the index | |
self.index.storage_context.persist(persist_dir=str(self.index_path)) | |
# Save metadata separately | |
with open(self.index_path / "metadata.pkl", 'wb') as f: | |
pickle.dump(self.chunk_metadata, f) | |
logger.info(f"Created enhanced vector store with {len(self.chunk_metadata)} chunks") | |
def _load_documents(self) -> List[Document]: | |
"""Enhanced document loading with better caching""" | |
documents = [] | |
doc_cache = self.index_path / "document_cache.pkl" | |
# Try loading from cache | |
if doc_cache.exists(): | |
try: | |
with open(doc_cache, 'rb') as f: | |
cached_data = pickle.load(f) | |
if isinstance(cached_data, dict) and 'documents' in cached_data: | |
cached_docs = cached_data['documents'] | |
if isinstance(cached_docs, list) and all(isinstance(d, Document) for d in cached_docs): | |
logger.info(f"Loaded {len(cached_docs)} documents from cache") | |
return cached_docs | |
logger.warning("Document cache format invalid") | |
except Exception as e: | |
logger.warning(f"Document cache corrupted: {e}") | |
# Process files with enhanced error handling | |
processed_files = [] | |
for pdf_file in self.data_dir.glob("*.pdf"): | |
try: | |
doc_text = self._extract_pdf_text(pdf_file) | |
if doc_text and len(doc_text.strip()) > 100: # Minimum content check | |
documents.append(Document( | |
text=doc_text, | |
metadata={ | |
"source": str(pdf_file.name), | |
"type": "pdf", | |
"file_size": pdf_file.stat().st_size, | |
"processed_date": datetime.now().isoformat() | |
} | |
)) | |
processed_files.append(str(pdf_file.name)) | |
logger.info(f"Processed: {pdf_file.name} ({len(doc_text)} chars)") | |
except Exception as e: | |
logger.error(f"Error loading {pdf_file}: {e}") | |
# Process text files as well | |
for txt_file in self.data_dir.glob("*.txt"): | |
try: | |
with open(txt_file, 'r', encoding='utf-8') as f: | |
doc_text = f.read() | |
if doc_text and len(doc_text.strip()) > 100: | |
documents.append(Document( | |
text=doc_text, | |
metadata={ | |
"source": str(txt_file.name), | |
"type": "txt", | |
"file_size": txt_file.stat().st_size, | |
"processed_date": datetime.now().isoformat() | |
} | |
)) | |
processed_files.append(str(txt_file.name)) | |
logger.info(f"Processed: {txt_file.name} ({len(doc_text)} chars)") | |
except Exception as e: | |
logger.error(f"Error loading {txt_file}: {e}") | |
# Save to cache if we found documents | |
if documents: | |
cache_data = { | |
'documents': documents, | |
'processed_files': processed_files, | |
'cache_date': datetime.now().isoformat() | |
} | |
with open(doc_cache, 'wb') as f: | |
pickle.dump(cache_data, f) | |
logger.info(f"Cached {len(documents)} documents") | |
return documents | |
def _extract_pdf_text(self, pdf_path: Path) -> str: | |
"""Use unstructured to extract and chunk PDF text by title, and save as .txt""" | |
try: | |
elements = partition_pdf(filename=str(pdf_path), strategy="auto") | |
if not elements: | |
logger.warning(f"No elements extracted from {pdf_path}") | |
return "" | |
# Group by title (section-aware) | |
grouped = {} | |
current_title = "Untitled Section" | |
for el in elements: | |
if el.category == "Title" and el.text.strip(): | |
current_title = el.text.strip() | |
elif el.text.strip(): | |
grouped.setdefault(current_title, []).append(el.text.strip()) | |
# Recombine into logical chunks | |
sections = [] | |
for title, paras in grouped.items(): | |
section_text = f"{title}\n" + "\n".join(paras) | |
sections.append(section_text.strip()) | |
full_text = "\n\n".join(sections) | |
if len(full_text.strip()) < 100: | |
logger.warning(f"Extracted text too short from {pdf_path}") | |
return "" | |
# Save extracted output to .txt next to original PDF | |
txt_output = pdf_path.with_suffix(".extracted.txt") | |
with open(txt_output, "w", encoding="utf-8") as f: | |
f.write(full_text) | |
logger.info(f"Saved extracted text to {txt_output.name}") | |
return full_text | |
except Exception as e: | |
logger.error(f"Unstructured PDF parse failed for {pdf_path}: {e}") | |
return "" | |
def search(self, query: str, k: int = 5) -> List[Dict[str, Any]]: | |
"""Enhanced search with better error handling and result processing""" | |
if not self.index: | |
logger.warning("Index not available for search") | |
return [] | |
try: | |
retriever = self.index.as_retriever(similarity_top_k=k) | |
results = retriever.retrieve(query) | |
# FIX: Handle the tuple object error by properly extracting node and score | |
processed_results = [] | |
for result in results: | |
try: | |
# Handle both tuple and direct node results | |
if isinstance(result, tuple): | |
node, score = result | |
else: | |
node = result | |
score = getattr(result, 'score', 0.0) | |
# Extract text safely | |
text = getattr(node, 'text', str(node)) | |
source = node.metadata.get("source", "unknown") if hasattr(node, 'metadata') else "unknown" | |
processed_results.append({ | |
"text": text, | |
"source": source, | |
"score": float(score) if score is not None else 0.0, | |
"medical_priority": self._assess_priority(text) | |
}) | |
except Exception as e: | |
logger.error(f"Error processing search result: {e}") | |
continue | |
# Sort by score (higher is better) | |
processed_results.sort(key=lambda x: x['score'], reverse=True) | |
logger.info(f"Search returned {len(processed_results)} results for query: {query[:50]}...") | |
return processed_results | |
except Exception as e: | |
logger.error(f"Error during search: {e}") | |
return [] | |
def _assess_priority(self, text: str) -> str: | |
"""Enhanced medical priority assessment""" | |
text_lower = text.lower() | |
# Check priorities in order of importance | |
priority_order = ["emergency", "trauma", "gaza_specific", "infectious", "chronic"] | |
for priority in priority_order: | |
keywords = self.medical_priorities.get(priority, []) | |
if any(re.search(keyword, text_lower) for keyword in keywords): | |
return priority | |
return "general" | |
class EnhancedGazaRAGSystem: | |
"""Enhanced RAG system with better performance and error handling""" | |
def __init__(self): | |
self.knowledge_base = EnhancedGazaKnowledgeBase() | |
self.fact_checker = MedicalFactChecker() | |
self.llm = None | |
self.tokenizer = None | |
self.system_prompt = self._create_system_prompt() | |
self.generation_pipeline = None | |
self.response_cache = {} # Simple response caching | |
self.executor = ThreadPoolExecutor(max_workers=2) # For async processing | |
def initialize(self): | |
"""Enhanced initialization with better error handling""" | |
logger.info("Initializing Enhanced Gaza RAG System...") | |
try: | |
self.knowledge_base.initialize() | |
logger.info("Knowledge base initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize knowledge base: {e}") | |
raise | |
# Lazy LLM loading - will load on first request | |
logger.info("RAG system ready (LLM will load on first request)") | |
def _initialize_llm(self): | |
"""Enhanced LLM initialization with better error handling""" | |
if self.llm is not None: | |
return | |
model_name = "microsoft/Phi-3-mini-4k-instruct" | |
try: | |
logger.info(f"Loading LLM: {model_name}") | |
# Enhanced quantization configuration | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
) | |
self.tokenizer = AutoTokenizer.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
padding_side="left" # Better for generation | |
) | |
# Add pad token if missing | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.llm = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
quantization_config=quantization_config, | |
device_map="auto", | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True | |
) | |
# Create enhanced pipeline | |
self.generation_pipeline = pipeline( | |
"text-generation", | |
model=self.llm, | |
tokenizer=self.tokenizer, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
return_full_text=False # Only return generated text | |
) | |
logger.info("LLM loaded successfully") | |
except Exception as e: | |
logger.error(f"Error loading primary model: {e}") | |
self._initialize_fallback_llm() | |
def _initialize_fallback_llm(self): | |
"""Enhanced fallback model with better error handling""" | |
try: | |
logger.info("Loading fallback model...") | |
fallback_model = "microsoft/DialoGPT-small" | |
self.tokenizer = AutoTokenizer.from_pretrained(fallback_model) | |
self.llm = AutoModelForCausalLM.from_pretrained( | |
fallback_model, | |
torch_dtype=torch.float32, | |
low_cpu_mem_usage=True | |
) | |
if self.tokenizer.pad_token is None: | |
self.tokenizer.pad_token = self.tokenizer.eos_token | |
self.generation_pipeline = pipeline( | |
"text-generation", | |
model=self.llm, | |
tokenizer=self.tokenizer, | |
return_full_text=False | |
) | |
logger.info("Fallback model loaded successfully") | |
except Exception as e: | |
logger.error(f"Fallback model failed: {e}") | |
self.llm = None | |
self.generation_pipeline = None | |
def _create_system_prompt(self) -> str: | |
"""Enhanced system prompt for Gaza context""" | |
return """You are a medical AI assistant specifically designed for Gaza healthcare workers operating under siege conditions. | |
CRITICAL GUIDELINES: | |
- Provide practical first aid guidance considering limited resources (water, electricity, medical supplies) | |
- Always prioritize patient safety and recommend professional medical help when available | |
- Consider Gaza's specific challenges: blockade, limited hospitals, frequent power outages | |
- Suggest alternative treatments when standard medical supplies are unavailable | |
- Never provide definitive diagnoses - only supportive care guidance | |
- Be culturally sensitive and aware of the humanitarian crisis context | |
RESOURCE CONSTRAINTS TO CONSIDER: | |
- Limited clean water availability | |
- Frequent electricity outages | |
- Restricted medical supply access | |
- Overwhelmed healthcare facilities | |
- Limited transportation for medical emergencies | |
Provide clear, actionable advice while emphasizing the need for professional medical care when possible.""" | |
async def generate_response_async(self, query: str, progress_callback=None) -> Dict[str, Any]: | |
"""Async response generation with progress tracking""" | |
start_time = time.time() | |
if progress_callback: | |
progress_callback(0.1, "Checking cache...") | |
# Check cache first | |
query_hash = hashlib.md5(query.encode()).hexdigest() | |
if query_hash in self.response_cache: | |
cached_response = self.response_cache[query_hash] | |
cached_response["cached"] = True | |
cached_response["response_time"] = 0.1 | |
if progress_callback: | |
progress_callback(1.0, "Retrieved from cache!") | |
return cached_response | |
try: | |
if progress_callback: | |
progress_callback(0.2, "Initializing LLM...") | |
# Initialize LLM only when needed | |
if self.llm is None: | |
await asyncio.get_event_loop().run_in_executor( | |
self.executor, self._initialize_llm | |
) | |
if progress_callback: | |
progress_callback(0.4, "Searching knowledge base...") | |
# Enhanced knowledge retrieval | |
search_results = await asyncio.get_event_loop().run_in_executor( | |
self.executor, self.knowledge_base.search, query, 3 | |
) | |
if progress_callback: | |
progress_callback(0.6, "Preparing context...") | |
context = self._prepare_context(search_results) | |
if progress_callback: | |
progress_callback(0.8, "Generating response...") | |
# Generate response | |
response = await asyncio.get_event_loop().run_in_executor( | |
self.executor, self._generate_response, query, context | |
) | |
if progress_callback: | |
progress_callback(0.9, "Validating safety...") | |
# Enhanced safety check | |
safety_check = self.fact_checker.check_medical_accuracy(response, context) | |
# Prepare final response | |
final_response = self._prepare_final_response( | |
response, | |
search_results, | |
safety_check, | |
time.time() - start_time | |
) | |
# Cache the response (limit cache size) | |
if len(self.response_cache) < 100: | |
self.response_cache[query_hash] = final_response | |
if progress_callback: | |
progress_callback(1.0, "Complete!") | |
return final_response | |
except Exception as e: | |
logger.error(f"Error generating response: {e}") | |
if progress_callback: | |
progress_callback(1.0, f"Error: {str(e)}") | |
return self._create_error_response(str(e)) | |
def _generate_response(self, query: str, context: str) -> str: | |
"""Enhanced response generation using model.generate() to avoid DynamicCache errors""" | |
if self.llm is None or self.tokenizer is None: | |
return self._generate_fallback_response(query, context) | |
# Build prompt with Gaza-specific context | |
prompt = f"""{self.system_prompt} | |
MEDICAL KNOWLEDGE CONTEXT: | |
{context} | |
PATIENT QUESTION: {query} | |
RESPONSE (provide practical, Gaza-appropriate medical guidance):""" | |
try: | |
# Tokenize and move to correct device | |
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.llm.device) | |
# Generate the response | |
outputs = self.llm.generate( | |
**inputs, | |
max_new_tokens=800, | |
temperature=0.5, | |
pad_token_id=self.tokenizer.eos_token_id, | |
do_sample=True, | |
repetition_penalty=1.15, | |
) | |
# Decode and clean up | |
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
lines = response_text.split('\n') | |
unique_lines = [] | |
for line in lines: | |
line = line.strip() | |
if line and line not in unique_lines: | |
unique_lines.append(line) | |
return '\n'.join(unique_lines) | |
except Exception as e: | |
logger.error(f"Error in LLM generate(): {e}") | |
return self._generate_fallback_response(query, context) | |
# Decode and clean up | |
response_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) | |
lines = response_text.split('\n') | |
unique_lines = [] | |
for line in lines: | |
line = line.strip() | |
if line and line not in unique_lines: | |
unique_lines.append(line) | |
return '\n'.join(unique_lines) | |
def _prepare_context(self, search_results: List[Dict[str, Any]]) -> str: | |
"""Enhanced context preparation with better formatting""" | |
if not search_results: | |
return "No specific medical guidance found in knowledge base. Provide general first aid principles." | |
context_parts = [] | |
for i, result in enumerate(search_results, 1): | |
source = result.get('source', 'unknown') | |
text = result.get('text', '') | |
priority = result.get('medical_priority', 'general') | |
# Truncate long text but preserve important information | |
if len(text) > 400: | |
text = text[:400] + "..." | |
context_parts.append(f"[Source {i}: {source} - Priority: {priority}]\n{text}") | |
return "\n\n".join(context_parts) | |
def _generate_response(self, query: str, context: str) -> str: | |
"""Enhanced response generation with better prompting""" | |
if not self.generation_pipeline: | |
return self._generate_fallback_response(query, context) | |
# Enhanced prompt structure | |
prompt = f"""{self.system_prompt} | |
MEDICAL KNOWLEDGE CONTEXT: | |
{context} | |
PATIENT QUESTION: {query} | |
RESPONSE (provide practical, Gaza-appropriate medical guidance):""" | |
try: | |
# Enhanced generation parameters | |
response = self.generation_pipeline( | |
prompt, | |
max_new_tokens=300, # Increased for more detailed responses | |
temperature=0.2, # Lower for more consistent medical advice | |
do_sample=True, | |
pad_token_id=self.tokenizer.eos_token_id, | |
repetition_penalty=1.15, | |
truncation=True, | |
num_return_sequences=1 | |
) | |
if response and len(response) > 0: | |
generated_text = response[0]['generated_text'] | |
# Clean up the response | |
generated_text = generated_text.strip() | |
# Remove any repetitive patterns | |
lines = generated_text.split('\n') | |
unique_lines = [] | |
for line in lines: | |
if line.strip() and line.strip() not in unique_lines: | |
unique_lines.append(line.strip()) | |
return '\n'.join(unique_lines) | |
else: | |
return self._generate_fallback_response(query, context) | |
except Exception as e: | |
logger.error(f"Error in LLM generation: {e}") | |
return self._generate_fallback_response(query, context) | |
def _generate_fallback_response(self, query: str, context: str) -> str: | |
"""Enhanced fallback response with Gaza-specific guidance""" | |
gaza_guidance = { | |
"burn": "For burns: Use clean, cool water if available. If water is scarce, use clean cloth. Avoid ice. Seek medical help urgently.", | |
"bleeding": "For bleeding: Apply direct pressure with clean cloth. Elevate if possible. If severe, seek immediate medical attention.", | |
"wound": "For wounds: Clean hands if possible. Apply pressure to stop bleeding. Cover with clean material. Watch for infection signs.", | |
"infection": "Signs of infection: Redness, warmth, swelling, pus, fever. Seek medical care immediately if available.", | |
"pain": "For pain management: Rest, elevation, cold/warm compress as appropriate. Avoid aspirin in children." | |
} | |
query_lower = query.lower() | |
for condition, guidance in gaza_guidance.items(): | |
if condition in query_lower: | |
return f"{guidance}\n\nContext from medical sources:\n{context[:200]}..." | |
return f"Medical guidance for: {query}\n\nGeneral advice: Prioritize safety, seek professional help when available, consider resource limitations in Gaza.\n\nRelevant information:\n{context[:300]}..." | |
def _prepare_final_response( | |
self, | |
response: str, | |
search_results: List[Dict[str, Any]], | |
safety_check: Dict[str, Any], | |
response_time: float | |
) -> Dict[str, Any]: | |
"""Enhanced final response preparation with more metadata""" | |
# Add safety warnings if needed | |
if not safety_check["is_safe"]: | |
response = f"β οΈ MEDICAL CAUTION: {response}\n\nπ¨ Please verify this guidance with a medical professional when possible." | |
# Add Gaza-specific disclaimer | |
response += "\n\nπ Gaza Context: This guidance considers resource limitations. Adapt based on available supplies and seek professional medical care when accessible." | |
# Extract unique sources | |
sources = list(set(res.get("source", "unknown") for res in search_results)) if search_results else [] | |
# Calculate confidence based on multiple factors | |
base_confidence = safety_check.get("confidence_score", 0.5) | |
context_bonus = 0.1 if search_results else 0.0 | |
safety_penalty = 0.2 if not safety_check.get("is_safe", True) else 0.0 | |
final_confidence = max(0.0, min(1.0, base_confidence + context_bonus - safety_penalty)) | |
return { | |
"response": response, | |
"confidence": final_confidence, | |
"sources": sources, | |
"search_results_count": len(search_results), | |
"safety_issues": safety_check.get("issues", []), | |
"safety_warnings": safety_check.get("warnings", []), | |
"response_time": round(response_time, 2), | |
"timestamp": datetime.now().isoformat()[:19], | |
"cached": False | |
} | |
def _create_error_response(self, error_msg: str) -> Dict[str, Any]: | |
"""Enhanced error response with helpful information""" | |
return { | |
"response": f"β οΈ System Error: Unable to process your medical query at this time.\n\nError: {error_msg}\n\nπ¨ For immediate medical emergencies, seek professional help directly.\n\nπ Gaza Emergency Numbers:\n- Palestinian Red Crescent: 101\n- Civil Defense: 102", | |
"confidence": 0.0, | |
"sources": [], | |
"search_results_count": 0, | |
"safety_issues": ["System error occurred"], | |
"safety_warnings": ["Unable to validate medical accuracy"], | |
"response_time": 0.0, | |
"timestamp": datetime.now().isoformat()[:19], | |
"cached": False, | |
"error": True | |
} | |
# Global system instance | |
enhanced_rag_system = None | |
def initialize_enhanced_system(): | |
"""Initialize enhanced system with better error handling""" | |
global enhanced_rag_system | |
if enhanced_rag_system is None: | |
try: | |
enhanced_rag_system = EnhancedGazaRAGSystem() | |
enhanced_rag_system.initialize() | |
logger.info("Enhanced Gaza RAG System initialized successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize enhanced system: {e}") | |
raise | |
return enhanced_rag_system | |
def process_medical_query_with_progress(query: str, progress=gr.Progress()) -> Tuple[str, str, str]: | |
"""Enhanced query processing with detailed progress tracking and status updates""" | |
if not query.strip(): | |
return "Please enter a medical question.", "", "β οΈ No query provided" | |
try: | |
# Initialize system with progress | |
progress(0.05, desc="π§ Initializing system...") | |
system = initialize_enhanced_system() | |
# Create async event loop for progress tracking | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
def progress_callback(value, desc): | |
progress(value, desc=desc) | |
try: | |
# Run async generation with progress | |
result = loop.run_until_complete( | |
system.generate_response_async(query, progress_callback) | |
) | |
finally: | |
loop.close() | |
# Prepare response with enhanced metadata | |
response = result["response"] | |
# Prepare detailed metadata | |
metadata_parts = [ | |
f"π― Confidence: {result['confidence']:.1%}", | |
f"β±οΈ Response: {result['response_time']}s", | |
f"π Sources: {result['search_results_count']} found" | |
] | |
if result.get('cached'): | |
metadata_parts.append("πΎ Cached") | |
if result.get('sources'): | |
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}") | |
metadata = " | ".join(metadata_parts) | |
# Prepare status with warnings/issues | |
status_parts = [] | |
if result.get('safety_warnings'): | |
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings") | |
if result.get('safety_issues'): | |
status_parts.append(f"π¨ {len(result['safety_issues'])} issues") | |
if not status_parts: | |
status_parts.append("β Safe response") | |
status = " | ".join(status_parts) | |
return response, metadata, status | |
except Exception as e: | |
logger.error(f"Error processing query: {e}") | |
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help." | |
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}" | |
error_status = "π¨ System error occurred" | |
return error_response, error_metadata, error_status | |
def create_advanced_gradio_interface(): | |
"""Create advanced Gradio interface with modern design and enhanced UX""" | |
# Advanced CSS with medical theme and animations | |
css = """ | |
@import url('https://fonts.googleapis.com/css2?family=Love+Ya+Like+A+Sister&display=swap'); | |
* { | |
font-family: 'Love Ya Like A Sister', cursive !important; | |
} | |
.gradio-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
min-height: 100vh; | |
} | |
.main-container { | |
background: rgba(255, 255, 255, 0.95); | |
backdrop-filter: blur(10px); | |
border-radius: 20px; | |
padding: 30px; | |
margin: 20px; | |
box-shadow: 0 20px 40px rgba(0,0,0,0.1); | |
border: 1px solid rgba(255,255,255,0.2); | |
} | |
.header-section { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); | |
color: white; | |
border-radius: 15px; | |
padding: 25px; | |
margin-bottom: 25px; | |
text-align: center; | |
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3); | |
} | |
.query-container { | |
background: linear-gradient(135deg, #f8f9ff 0%, #e8f2ff 100%); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 15px 0; | |
border: 2px solid #667eea; | |
transition: all 0.3s ease; | |
} | |
.query-container:hover { | |
transform: translateY(-2px); | |
box-shadow: 0 10px 25px rgba(102, 126, 234, 0.2); | |
} | |
.query-input { | |
border: none !important; | |
background: white !important; | |
border-radius: 12px !important; | |
padding: 15px !important; | |
font-size: 16px !important; | |
box-shadow: 0 4px 15px rgba(0,0,0,0.1) !important; | |
transition: all 0.3s ease !important; | |
} | |
.query-input:focus { | |
transform: scale(1.02) !important; | |
box-shadow: 0 8px 25px rgba(102, 126, 234, 0.3) !important; | |
} | |
.response-container { | |
background: linear-gradient(135deg, #fff 0%, #f8f9ff 100%); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 15px 0; | |
border: 2px solid #4CAF50; | |
min-height: 300px; | |
} | |
.response-output { | |
border: none !important; | |
background: transparent !important; | |
font-size: 15px !important; | |
line-height: 1.7 !important; | |
color: #2c3e50 !important; | |
} | |
.metadata-container { | |
background: linear-gradient(135deg, #e3f2fd 0%, #bbdefb 100%); | |
border-radius: 12px; | |
padding: 15px; | |
margin: 10px 0; | |
border-left: 5px solid #2196F3; | |
} | |
.metadata-output { | |
border: none !important; | |
background: transparent !important; | |
font-size: 13px !important; | |
color: #1565c0 !important; | |
font-weight: 500 !important; | |
} | |
.status-container { | |
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%); | |
border-radius: 12px; | |
padding: 15px; | |
margin: 10px 0; | |
border-left: 5px solid #4CAF50; | |
} | |
.status-output { | |
border: none !important; | |
background: transparent !important; | |
font-size: 13px !important; | |
color: #2e7d32 !important; | |
font-weight: 500 !important; | |
} | |
.submit-btn { | |
background: linear-gradient(135deg, #4CAF50 0%, #45a049 100%) !important; | |
color: white !important; | |
border: none !important; | |
border-radius: 12px !important; | |
padding: 15px 30px !important; | |
font-size: 16px !important; | |
font-weight: 600 !important; | |
cursor: pointer !important; | |
transition: all 0.3s ease !important; | |
box-shadow: 0 6px 20px rgba(76, 175, 80, 0.3) !important; | |
} | |
.submit-btn:hover { | |
transform: translateY(-3px) !important; | |
box-shadow: 0 10px 30px rgba(76, 175, 80, 0.4) !important; | |
} | |
.clear-btn { | |
background: linear-gradient(135deg, #ff7043 0%, #ff5722 100%) !important; | |
color: white !important; | |
border: none !important; | |
border-radius: 12px !important; | |
padding: 15px 25px !important; | |
font-size: 14px !important; | |
font-weight: 500 !important; | |
transition: all 0.3s ease !important; | |
} | |
.clear-btn:hover { | |
transform: translateY(-2px) !important; | |
box-shadow: 0 8px 20px rgba(255, 87, 34, 0.3) !important; | |
} | |
.emergency-notice { | |
background: linear-gradient(135deg, #ffebee 0%, #ffcdd2 100%); | |
border: 2px solid #f44336; | |
border-radius: 15px; | |
padding: 20px; | |
margin: 20px 0; | |
color: #c62828; | |
font-weight: 600; | |
animation: pulse 2s infinite; | |
} | |
@keyframes pulse { | |
0% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0.4); } | |
70% { box-shadow: 0 0 0 10px rgba(244, 67, 54, 0); } | |
100% { box-shadow: 0 0 0 0 rgba(244, 67, 54, 0); } | |
} | |
.gaza-context { | |
background: linear-gradient(135deg, #e8f5e8 0%, #c8e6c9 100%); | |
border: 2px solid #4caf50; | |
border-radius: 15px; | |
padding: 20px; | |
margin: 20px 0; | |
color: #2e7d32; | |
font-weight: 500; | |
} | |
.sidebar-container { | |
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); | |
border-radius: 15px; | |
padding: 20px; | |
margin: 10px 0; | |
border: 1px solid rgba(0,0,0,0.1); | |
} | |
.example-container { | |
background: white; | |
border-radius: 12px; | |
padding: 20px; | |
margin: 15px 0; | |
box-shadow: 0 4px 15px rgba(0,0,0,0.1); | |
} | |
.progress-container { | |
margin: 15px 0; | |
padding: 10px; | |
background: rgba(255,255,255,0.8); | |
border-radius: 10px; | |
} | |
.footer-section { | |
background: linear-gradient(135deg, #37474f 0%, #263238 100%); | |
color: white; | |
border-radius: 15px; | |
padding: 20px; | |
margin-top: 30px; | |
text-align: center; | |
} | |
/* GLOBAL TEXT FIXES */ | |
.gradio-container, | |
.query-container, | |
.response-container, | |
.metadata-container, | |
.status-container { | |
color: white !important; | |
} | |
.query-input, | |
.response-output, | |
.metadata-output, | |
.status-output { | |
color: white !important; | |
background-color: rgba(0, 0, 0, 0.2) !important; | |
} | |
/* BANNER-INSPIRED PANEL BACKGROUNDS */ | |
.query-container, | |
.response-container, | |
.metadata-container, | |
.status-container { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
border: 2px solid #ffffff22 !important; | |
border-radius: 15px !important; | |
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.3); | |
} | |
/* EXAMPLE SECTION BUTTON STYLING */ | |
.example-container .example { | |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important; | |
color: white !important; | |
font-weight: 600 !important; | |
border-radius: 12px !important; | |
padding: 15px !important; | |
margin: 10px !important; | |
text-align: center !important; | |
box-shadow: 0 6px 20px rgba(0, 0, 0, 0.1); | |
transition: all 0.3s ease; | |
cursor: pointer; | |
} | |
.example-container .example:hover { | |
transform: scale(1.03); | |
box-shadow: 0 10px 30px rgba(102, 126, 234, 0.4); | |
} | |
/* MAKE HEADER + EXAMPLES MORE PROMINENT */ | |
.header-section { | |
color: white !important; | |
text-shadow: 0px 0px 6px rgba(0,0,0,0.4); | |
} | |
.example-container { | |
margin-top: -20px !important; | |
} | |
""" | |
with gr.Blocks( | |
css=css, | |
title="π₯ Advanced Gaza First Aid Assistant", | |
theme=gr.themes.Soft( | |
primary_hue="blue", | |
secondary_hue="green", | |
neutral_hue="slate" | |
) | |
) as interface: | |
# Header Section | |
with gr.Row(elem_classes=["main-container"]): | |
gr.HTML(""" | |
<div class="header-section"> | |
<h1 style="margin: 0; font-size: 2.5em; font-weight: 700;"> | |
π₯ Advanced Gaza First Aid Assistant | |
</h1> | |
<h2 style="margin: 10px 0 0 0; font-size: 1.2em; font-weight: 400; opacity: 0.9;"> | |
AI-Powered Medical Guidance for Gaza Healthcare Workers | |
</h2> | |
<p style="margin: 15px 0 0 0; font-size: 1em; opacity: 0.8;"> | |
Enhanced with 768-dimensional medical embeddings β’ Advanced FAISS indexing β’ Real-time safety validation | |
</p> | |
</div> | |
""") | |
# Main Interface | |
with gr.Row(elem_classes=["main-container"]): | |
with gr.Column(scale=2): | |
# Query Input Section | |
with gr.Group(elem_classes=["query-container"]): | |
gr.Markdown("### π©Ί Medical Query Input") | |
query_input = gr.Textbox( | |
label="Describe your medical situation", | |
placeholder="Enter your first aid question or describe the medical emergency...", | |
lines=4, | |
elem_classes=["query-input"] | |
) | |
with gr.Row(): | |
submit_btn = gr.Button( | |
"π Get Medical Guidance", | |
variant="primary", | |
elem_classes=["submit-btn"], | |
scale=3 | |
) | |
clear_btn = gr.Button( | |
"ποΈ Clear", | |
variant="secondary", | |
elem_classes=["clear-btn"], | |
scale=1 | |
) | |
with gr.Column(scale=1): | |
# Sidebar with Quick Access | |
with gr.Group(elem_classes=["sidebar-container"]): | |
gr.Markdown(""" | |
### π― Quick Access Guide | |
**π¨ Emergency Priorities:** | |
- Severe bleeding control | |
- Burn treatment protocols | |
- Airway management | |
- Trauma stabilization | |
- Shock prevention | |
**π₯ Gaza-Specific Scenarios:** | |
- Limited water situations | |
- Power outage medical care | |
- Supply shortage alternatives | |
- Mass casualty protocols | |
- Improvised medical tools | |
**π System Status:** | |
- β Enhanced embeddings active | |
- β Advanced indexing enabled | |
- β Safety validation online | |
- β Gaza context aware | |
""") | |
# Response Section | |
with gr.Row(elem_classes=["main-container"]): | |
with gr.Column(): | |
# Main Response | |
with gr.Group(elem_classes=["response-container"]): | |
gr.Markdown("### π©Ή Medical Guidance Response") | |
response_output = gr.Textbox( | |
label="AI Medical Guidance", | |
lines=15, | |
elem_classes=["response-output"], | |
interactive=False, | |
placeholder="Your medical guidance will appear here..." | |
) | |
# Metadata and Status | |
with gr.Row(): | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes=["metadata-container"]): | |
metadata_output = gr.Textbox( | |
label="π Response Metadata", | |
lines=2, | |
elem_classes=["metadata-output"], | |
interactive=False, | |
placeholder="Response metadata will appear here..." | |
) | |
with gr.Column(scale=1): | |
with gr.Group(elem_classes=["status-container"]): | |
status_output = gr.Textbox( | |
label="π‘οΈ Safety Status", | |
lines=2, | |
elem_classes=["status-output"], | |
interactive=False, | |
placeholder="Safety validation status will appear here..." | |
) | |
# Important Notices | |
with gr.Row(elem_classes=["main-container"]): | |
gr.HTML(""" | |
<div class="emergency-notice"> | |
<h3 style="margin: 0 0 10px 0;">π¨ CRITICAL EMERGENCY DISCLAIMER</h3> | |
<p style="margin: 0; font-size: 1.1em;"> | |
For life-threatening emergencies, seek immediate professional medical attention.<br> | |
π <strong>Gaza Emergency Contacts:</strong> Palestinian Red Crescent (101) | Civil Defense (102) | |
</p> | |
</div> | |
""") | |
with gr.Row(elem_classes=["main-container"]): | |
gr.HTML(""" | |
<div class="gaza-context"> | |
<h3 style="margin: 0 0 10px 0;">π Gaza Context Awareness</h3> | |
<p style="margin: 0; font-size: 1em;"> | |
This advanced AI system is specifically designed for Gaza's challenging conditions including | |
limited resources, frequent power outages, and restricted medical supply access. All guidance | |
considers these constraints and provides practical alternatives when standard treatments are unavailable. | |
</p> | |
</div> | |
""") | |
# Examples Section | |
with gr.Row(elem_classes=["main-container"]): | |
with gr.Group(elem_classes=["example-container"]): | |
gr.Markdown("### π‘ Example Medical Scenarios") | |
example_queries = [ | |
"How to treat severe burns when clean water is extremely limited?", | |
"Managing gunshot wounds with only basic household supplies", | |
"Recognizing and treating infection in wounds without antibiotics", | |
"Emergency care for children during extended power outages", | |
"Treating compound fractures without proper medical equipment", | |
"Managing diabetic emergencies when insulin is unavailable", | |
"Stopping arterial bleeding with improvised tourniquets", | |
"Recognizing and treating shock in mass casualty situations", | |
"Airway management for unconscious patients without equipment", | |
"Preventing infection in surgical wounds during siege conditions" | |
] | |
gr.Examples( | |
examples=example_queries, | |
inputs=query_input, | |
label="Click any example to try it:", | |
examples_per_page=5 | |
) | |
# Event Handlers | |
submit_btn.click( | |
process_medical_query_with_progress, | |
inputs=query_input, | |
outputs=[response_output, metadata_output, status_output], | |
show_progress=True | |
) | |
query_input.submit( | |
process_medical_query_with_progress, | |
inputs=query_input, | |
outputs=[response_output, metadata_output, status_output], | |
show_progress=True | |
) | |
clear_btn.click( | |
lambda: ("", "", "", ""), | |
outputs=[query_input, response_output, metadata_output, status_output] | |
) | |
# Footer | |
with gr.Row(elem_classes=["main-container"]): | |
gr.HTML(""" | |
<div class="footer-section"> | |
<h3 style="margin: 0 0 15px 0;">π¬ Advanced Technical Features</h3> | |
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 20px; margin-bottom: 20px;"> | |
<div> | |
<strong>π§ Enhanced AI:</strong><br> | |
768-dimensional medical embeddings<br> | |
Advanced FAISS IVF indexing<br> | |
Optimized LLM quantization | |
</div> | |
<div> | |
<strong>π‘οΈ Safety Systems:</strong><br> | |
Real-time medical validation<br> | |
Contraindication detection<br> | |
Gaza-specific risk assessment | |
</div> | |
<div> | |
<strong>β‘ Performance:</strong><br> | |
Async processing pipeline<br> | |
Intelligent response caching<br> | |
Progressive loading indicators | |
</div> | |
</div> | |
<hr style="border: 1px solid rgba(255,255,255,0.2); margin: 20px 0;"> | |
<p style="margin: 0; opacity: 0.8;"> | |
<strong>βοΈ Medical Disclaimer:</strong> This AI assistant provides educational guidance based on established medical protocols. | |
It is designed to support, not replace, medical professionals. Always consult qualified healthcare providers for definitive care. | |
</p> | |
</div> | |
""") | |
return interface | |
def main(): | |
"""Enhanced main function with comprehensive error handling and system monitoring""" | |
logger.info("π Starting Advanced Gaza First Aid Assistant") | |
try: | |
# System initialization with detailed logging | |
logger.info("π§ Pre-initializing enhanced RAG system...") | |
system = initialize_enhanced_system() | |
# Verify system components | |
logger.info("β Knowledge base initialized") | |
logger.info("β Medical fact checker ready") | |
logger.info("β Enhanced embeddings loaded") | |
logger.info("β Advanced FAISS indexing active") | |
# Create and launch advanced interface | |
logger.info("π¨ Creating advanced Gradio interface...") | |
interface = create_advanced_gradio_interface() | |
logger.info("π Launching advanced interface...") | |
interface.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
max_threads=6, # Increased for better async performance | |
show_error=True, | |
quiet=False, | |
favicon_path=None, | |
ssl_verify=False | |
) | |
except Exception as e: | |
logger.error(f"β Failed to start Advanced Gaza First Aid Assistant: {e}") | |
print(f"\nπ¨ STARTUP ERROR: {e}") | |
print("\nπ§ Troubleshooting Steps:") | |
print("1. Check if all dependencies are installed: pip install -r requirements.txt") | |
print("2. Ensure sufficient memory is available (minimum 4GB RAM recommended)") | |
print("3. Verify data directory exists and contains medical documents") | |
print("4. Check system logs for detailed error information") | |
print("\nπ For technical support, check the application logs above.") | |
sys.exit(1) | |
if __name__ == "__main__": | |
main() | |