rituthombre commited on
Commit
1f8ee4d
0 Parent(s):

Duplicate from RituJim/QNim

Browse files
.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: QNim
3
+ emoji: 🦀
4
+ colorFrom: purple
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.16.0
8
+ app_file: app.py
9
+ pinned: false
10
+ duplicated_from: RituJim/QNim
11
+ ---
12
+
13
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
__pycache__/nim_game_env.cpython-37.pyc ADDED
Binary file (3.8 kB). View file
 
__pycache__/nim_gpt_functions.cpython-37.pyc ADDED
Binary file (3.94 kB). View file
 
__pycache__/qnim.cpython-37.pyc ADDED
Binary file (4.44 kB). View file
 
app.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import datetime
3
+ from nim_game_env import NimGameEnv
4
+ from nim_gpt_functions import plan_gpt_move, plan_qc_move, execute_move
5
+
6
+ TEMPERATURE_DEFAULT = 0.5
7
+ PILES_DEFAULT = [3, 5, 7]
8
+ HUMAN_STR = "Human"
9
+ PLAY_AGAINST_QC = "QC"
10
+ PLAY_AGAINST_GPT = "AI"
11
+
12
+
13
+ def reset_game(chat_history, nim_game_env):
14
+ chat_history = []
15
+ nim_game_env = NimGameEnv(PILES_DEFAULT)
16
+ game_state_text, game_state_piles = nim_game_env.reset()
17
+ ascii_art = generate_game_state_ascii_art(game_state_piles, False, 0, "")
18
+ message_str = ""
19
+ return chat_history, chat_history, message_str, ascii_art, nim_game_env
20
+
21
+
22
+ def generate_game_state_ascii_art(piles, done, reward, player):
23
+ ascii_art = "Game Over, " + player + " wins!"
24
+ if not done:
25
+ pile_a = piles[0]
26
+ pile_b = piles[1]
27
+ pile_c = piles[2]
28
+ ascii_art = f"Pile A: {'|' * pile_a} \nPile B: {'|' * pile_b} \nPile C: {'|' * pile_c}"
29
+ return "<pre>" + ascii_art + "</pre>"
30
+
31
+
32
+ def send_chat_msg(inp, chat_history, nim_game_env, temperature, openai_api_key, play_against):
33
+ if not openai_api_key or openai_api_key == "":
34
+ warning_msg = "<pre>Please paste your OpenAI API key (see https://beta.openai.com)</pre>"
35
+ return chat_history, chat_history, warning_msg
36
+
37
+ if not inp or inp == "":
38
+ warning_msg = "<pre>Please enter a move</pre>"
39
+ return chat_history, chat_history, warning_msg
40
+
41
+ inp = inp.strip()
42
+ output = None
43
+ chat_history = chat_history or []
44
+
45
+ text_obs, observation, reward, done, info = execute_move(inp, nim_game_env, openai_api_key)
46
+ ascii_art = generate_game_state_ascii_art(observation, done, reward, HUMAN_STR)
47
+
48
+ if done:
49
+ if reward == 1:
50
+ output = "Good game!"
51
+ ascii_art = generate_game_state_ascii_art(observation, done, reward, HUMAN_STR)
52
+ else:
53
+ output = text_obs
54
+ ascii_art = generate_game_state_ascii_art(observation, done, reward, play_against)
55
+ else:
56
+ if play_against == PLAY_AGAINST_QC:
57
+ output = plan_qc_move(text_obs)
58
+ else:
59
+ output = plan_gpt_move(text_obs, temperature, openai_api_key)
60
+
61
+ text_obs, observation, reward, done, info = execute_move(output, nim_game_env, openai_api_key)
62
+ ascii_art = generate_game_state_ascii_art(observation, done, reward, play_against)
63
+
64
+ print("\n==== date/time: " + str(datetime.datetime.now() - datetime.timedelta(hours=5)) + " ====")
65
+ print("inp: " + inp, ", output: ", output, ", observation: ", observation)
66
+
67
+ chat_history.append((HUMAN_STR + ": " + inp, play_against + ": " + output))
68
+ return chat_history, chat_history, ascii_art
69
+
70
+
71
+ def update_foo(widget, state):
72
+ if widget:
73
+ state = widget
74
+ return state
75
+
76
+
77
+ def update_opponent(widget, state):
78
+ if widget:
79
+ state = widget
80
+ return state
81
+
82
+
83
+ block = gr.Blocks(css=".gradio-container {background-color: lightgray}")
84
+ with block as nim_game:
85
+ temperature_state = gr.State(TEMPERATURE_DEFAULT)
86
+ openai_api_key_state = gr.State()
87
+ history_state = gr.State()
88
+ nim_game_env_state = gr.State(NimGameEnv(PILES_DEFAULT))
89
+ play_against_state = gr.State(PLAY_AGAINST_QC)
90
+
91
+ with gr.Row():
92
+ game_state_html = gr.Markdown()
93
+
94
+ with gr.Column():
95
+ title = gr.Markdown("""<h3><center>QNimGPT</center></h3>""")
96
+ subtitle = gr.Markdown("""<i><center>Play Nim against an IBM Quantum Computer simulator or OpenAI
97
+ GPT-3.5 AI. By <a href="https://github.com/ritu-thombre99">Ritu Thombre</a> and <a
98
+ href="https://github.com/JavaFXpert">James Weaver</a></center></i>""")
99
+
100
+ with gr.Column():
101
+ openai_api_key_textbox = gr.Textbox(placeholder="Paste your OpenAI API key",
102
+ show_label=False, lines=1, type='password')
103
+ play_against_radio = gr.Radio(label="Play against:", choices=[
104
+ PLAY_AGAINST_QC, PLAY_AGAINST_GPT], value=PLAY_AGAINST_QC)
105
+ play_against_radio.change(update_foo,
106
+ inputs=[play_against_radio, play_against_state],
107
+ outputs=[play_against_state])
108
+
109
+ chatbot = gr.Chatbot()
110
+
111
+ with gr.Row():
112
+ message_tb = gr.Textbox(label="What's your move?",
113
+ placeholder="I'll take 2 sticks from pile A")
114
+ send_btn = gr.Button(value="Send", variant="secondary").style(full_width=False)
115
+
116
+ with gr.Row():
117
+ gr.Examples(
118
+ examples=["I'll take two sticks from pile A",
119
+ "Three sticks from the second pile",
120
+ "From pile C remove 2 sticks"],
121
+ inputs=message_tb
122
+ )
123
+ reset_btn = gr.Button(value="Reset Game", variant="secondary").style(full_width=False)
124
+ temperature_slider = gr.Slider(label="GPT Temperature", value=TEMPERATURE_DEFAULT, minimum=0.0, maximum=1.0,
125
+ step=0.1)
126
+
127
+ send_btn.click(send_chat_msg, inputs=[message_tb, history_state, nim_game_env_state, temperature_state,
128
+ openai_api_key_state, play_against_state],
129
+ outputs=[chatbot, history_state, game_state_html])
130
+ message_tb.submit(send_chat_msg, inputs=[message_tb, history_state, nim_game_env_state, temperature_state,
131
+ openai_api_key_state, play_against_state],
132
+ outputs=[chatbot, history_state, game_state_html])
133
+ reset_btn.click(reset_game, inputs=[history_state, nim_game_env_state],
134
+ outputs=[chatbot, history_state, message_tb, game_state_html, nim_game_env_state])
135
+ nim_game.load(reset_game, inputs=[history_state, nim_game_env_state],
136
+ outputs=[chatbot, history_state, message_tb, game_state_html, nim_game_env_state])
137
+
138
+ gr.Markdown("""<center>Each player may remove sticks from a pile on their turn.
139
+ Player to remove the last stick wins.
140
+ <a href="https://en.wikipedia.org/wiki/Nim" target="new">
141
+ Nim is one of the first-ever electronic computerized games</a>
142
+ </center>""")
143
+
144
+ gr.HTML("<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>")
145
+
146
+ openai_api_key_textbox.change(update_foo,
147
+ inputs=[openai_api_key_textbox, openai_api_key_state],
148
+ outputs=[openai_api_key_state])
149
+
150
+ temperature_slider.change(update_foo,
151
+ inputs=[temperature_slider, temperature_state],
152
+ outputs=[temperature_state])
153
+
154
+ block.launch(debug=False)
nim_game_env.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from abc import ABC
2
+
3
+ import gymnasium as gym
4
+ from gymnasium import spaces
5
+ import numpy as np
6
+
7
+
8
+ class NimGameEnv(gym.Env, ABC):
9
+ """Custom environment for a simple Nim game.
10
+
11
+ In this game, there are two players and a number of piles of stones.
12
+ Each turn, a player can choose a pile and remove any number of stones from it.
13
+ The player who takes the last stone loses.
14
+
15
+ The observation space is a tuple of integers representing the number of stones in each pile.
16
+ The action space is a tuple of two integers, representing the chosen pile and the number of stones to remove.
17
+ """
18
+
19
+ def __init__(self, starting_stick_piles=[3, 5, 7]):
20
+ self.starting_stick_piles = starting_stick_piles
21
+ self.num_piles = len(starting_stick_piles)
22
+ self.max_stones = max(starting_stick_piles)
23
+ self.piles = self._init_piles()
24
+ self.current_player = 0
25
+ self.action_space = spaces.MultiDiscrete([self.num_piles, self.max_stones + 1])
26
+ self.observation_space = spaces.MultiDiscrete([self.max_stones + 1] * self.num_piles)
27
+
28
+ def step(self, action):
29
+ """Take a step in the environment.
30
+
31
+ Parameters
32
+ ----------
33
+ action: tuple
34
+ The action taken by the player, represented as a tuple of the chosen pile and the number of stones to remove.
35
+
36
+ Returns
37
+ -------
38
+ observation: tuple
39
+ The current number of stones in each pile.
40
+ reward: float
41
+ The reward for the current step.
42
+ done: bool
43
+ Whether the game has ended.
44
+ info: dict
45
+ Additional information about the step.
46
+ """
47
+ # Validate the action
48
+ if not self._is_valid_action(action):
49
+ raise ValueError("Invalid action")
50
+
51
+ # Update the piles
52
+ pile, num_stones = action
53
+ self.piles[pile] -= num_stones
54
+
55
+ # Determine if the game has ended
56
+ done = self._is_game_over()
57
+
58
+ # Calculate the reward
59
+ reward = self._calculate_reward()
60
+
61
+ # Switch the current player
62
+ self.current_player = (self.current_player + 1) % 2
63
+ return self.piles, reward, done, {}
64
+
65
+ def reset(self):
66
+ """Reset the environment to the initial state."""
67
+ self.piles = self._init_piles()
68
+ self.current_player = 0
69
+ text_observation = "The piles contain " + ", ".join(str(x) for x in self.piles) + " sticks."
70
+ return text_observation, self.piles
71
+
72
+ def _init_piles(self):
73
+ """Initialize the stick piles."""
74
+ return [3, 5, 7]
75
+
76
+ def _generate_random_stones(self):
77
+ """Generate a random number of stones (between 1 and max_stones inclusive)."""
78
+ return np.random.randint(1, self.max_stones + 1)
79
+
80
+ def _is_valid_action(self, action):
81
+ """Determine if an action is valid."""
82
+ pile, num_stones = action
83
+ return 0 <= pile < self.num_piles and 0 < num_stones <= self.max_stones and num_stones <= self.piles[pile]
84
+
85
+ def _is_game_over(self):
86
+ """Determine if the game has ended."""
87
+ return all(pile == 0 for pile in self.piles)
88
+
89
+ def _calculate_reward(self):
90
+ """Calculate the reward for the current step."""
91
+ return 1 if self._is_game_over() else 0
nim_gpt_functions.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain import OpenAI
2
+ from langchain.prompts import PromptTemplate, FewShotPromptTemplate
3
+ from langchain.chains import LLMChain
4
+ from qnim import get_quantum_move
5
+ import re
6
+ import inflect
7
+ p = inflect.engine()
8
+ EXAMPLES_PROMPT_TEMPLATE = PromptTemplate(
9
+ input_variables=["input", "output"],
10
+ template="Input: {input}\nOutput: {output}"
11
+ )
12
+
13
+ PLAN_MOVE_PROMPT_EXAMPLES = [
14
+ {"input": "The piles contain 3, 5, 7 sticks", "output": "I'll take one stick from pile A"},
15
+ {"input": "The piles contain 2, 5, 7 sticks", "output": "I'll take one stick from pile B"},
16
+ {"input": "The piles contain 2, 5, 7 sticks", "output": "I'll take five stick from pile B"},
17
+ {"input": "The piles contain 1, 2, 3 sticks", "output": "I'll take two sticks from pile C"},
18
+ {"input": "The piles contain 0, 2, 3 sticks", "output": "I'll take one stick from pile C"},
19
+ {"input": "The piles contain 0, 2, 0 sticks", "output": "I'll take two sticks from pile B"},
20
+ ]
21
+
22
+ PLAN_MOVE_PROMPT_FROM_STRING_EXAMPLES = FewShotPromptTemplate(
23
+ examples=PLAN_MOVE_PROMPT_EXAMPLES,
24
+ example_prompt=EXAMPLES_PROMPT_TEMPLATE,
25
+ prefix="Nim is a two-player game of strategy in which players take turns removing objects from separate piles. "
26
+ "The goal of the game is to remove the last sticks from a pile when the other piles contain 0 sticks. Each "
27
+ "of these inputs represent a game state. For each of these game states please express a logical move that "
28
+ "consists of taking some number of sticks from a pile. "
29
+ "You may not take any sticks from a pile that contains 0 sticks. "
30
+ "You may not take more sticks from a pile than it contains. "
31
+ "You may only take sticks from one pile. ",
32
+ suffix="Input: {text_game_state}\nOutput:",
33
+ input_variables=["text_game_state"],
34
+ example_separator="\n\n"
35
+ )
36
+
37
+ EXEC_MOVE_PROMPT_EXAMPLES = [
38
+ {"input": "I'll take two sticks from pile A", "output": "0,2"},
39
+ {"input": "I'll take 3 sticks from the first pile", "output": "0,3"},
40
+ {"input": "I'll take two sticks from pile C", "output": "2,2"},
41
+ {"input": "I'll take one stick from the third pile", "output": "2,1"},
42
+ {"input": "From pile B remove 2 sticks", "output": "1,2"},
43
+ {"input": "I'll take the last stick from pile C", "output": "2,1"},
44
+ ]
45
+
46
+ EXEC_MOVE_PROMPT_FROM_STRING_EXAMPLES = FewShotPromptTemplate(
47
+ examples=EXEC_MOVE_PROMPT_EXAMPLES,
48
+ example_prompt=EXAMPLES_PROMPT_TEMPLATE,
49
+ prefix="Express every input as two numbers separated by a comma, where the first number is the zero index pile "
50
+ "number and the second number is the number of sticks to remove.",
51
+ suffix="Input: {move_to_express}\nOutput:",
52
+ input_variables=["move_to_express"],
53
+ example_separator="\n\n"
54
+ )
55
+
56
+
57
+ def plan_gpt_move(text_game_state, temperature, api_key):
58
+ llm = OpenAI(model_name='text-davinci-003', temperature=temperature, max_tokens=100,
59
+ openai_api_key=api_key)
60
+ llm_chain = LLMChain(llm=llm, prompt=PLAN_MOVE_PROMPT_FROM_STRING_EXAMPLES, verbose=False)
61
+ planned_move = llm_chain.run({'text_game_state': text_game_state}).strip()
62
+ return planned_move
63
+
64
+
65
+ def plan_qc_move(text_game_state):
66
+ board_state = [int(s) for s in re.findall(r'\b\d+\b',text_game_state)]
67
+ board_state.append(0)
68
+ pile_choice, amount = get_quantum_move(board_state)
69
+ if amount > 1:
70
+ planned_move = "I'll take " + p.number_to_words(amount) + " sticks from pile " + chr(pile_choice+65) + "."
71
+ else:
72
+ planned_move = "I'll take " + p.number_to_words(amount) + " stick from pile " + chr(pile_choice+65) + "."
73
+ return planned_move
74
+
75
+
76
+ def execute_move(move_to_express, nim_game_env, api_key):
77
+ llm = OpenAI(model_name='text-davinci-003', temperature=0.0, max_tokens=10,
78
+ openai_api_key=api_key)
79
+ llm_chain = LLMChain(llm=llm, prompt=EXEC_MOVE_PROMPT_FROM_STRING_EXAMPLES, verbose=False)
80
+ step_tuple_str = llm_chain.run({'move_to_express': move_to_express})
81
+ step_tuple = tuple(int(x) for x in step_tuple_str.split(','))
82
+ try:
83
+ step_result = nim_game_env.step(step_tuple)
84
+ except ValueError:
85
+ return "Invalid move!", [0, 0, 0], 0, True, None
86
+
87
+ text_observation = "The piles contain " + ", ".join(str(x) for x in step_result[0]) + " sticks."
88
+ return text_observation, step_result[0], step_result[1], step_result[2], step_result[3]
qnim.py ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from qiskit import BasicAer, QuantumCircuit, QuantumRegister, ClassicalRegister, execute
3
+ from qiskit import IBMQ
4
+ # provider = IBMQ.load_account()
5
+
6
+
7
+ # def misere_step(ones,piles):
8
+ # # even number of piles of 1 eg (1,1,3,0) or (0,0,3,0)
9
+ # if ones%2 == 0:
10
+ # objects_to_remove = []
11
+ # removable_amount = 1
12
+ # for i in range(len(piles)):
13
+ # if piles[i] > 1:
14
+ # objects_to_remove.append(piles[i]-1)
15
+ # else:
16
+ # objects_to_remove.append(0)
17
+ # # odd number of piles of 1 eg (1,1,3,1)
18
+ # else:
19
+ # objects_to_remove = []
20
+ # removable_amount = 1
21
+ # for i in range(len(piles)):
22
+ # if piles[i] > 1:
23
+ # objects_to_remove.append(piles[i])
24
+ # else:
25
+ # objects_to_remove.append(0)
26
+ # return objects_to_remove, removable_amount
27
+
28
+ def get_piles_to_remove(piles):
29
+ nim_sum = 0
30
+ for p in piles:
31
+ nim_sum = nim_sum ^ p
32
+ objects_to_remove = []
33
+ removable_amount = 0
34
+ for p in piles:
35
+ new_p = p^nim_sum
36
+ if new_p < p:
37
+ objects_to_remove.append(p-new_p)
38
+ removable_amount = removable_amount + 1
39
+ else:
40
+ objects_to_remove.append(0)
41
+ return objects_to_remove, removable_amount
42
+
43
+
44
+ def custom_qft(data_qubits):
45
+ qr_data = QuantumRegister(data_qubits)
46
+ qc = QuantumCircuit(qr_data)
47
+ i = data_qubits
48
+ while i>=1:
49
+ n = i - 1
50
+ qc.h(qr_data[n])
51
+ for qubit in range(n):
52
+ qc.cp(np.pi/2**(n-qubit), qr_data[qubit], qr_data[n])
53
+ i = i-1
54
+ return qc
55
+
56
+ def subroutine_add_const(data_qubits: int, const: int, to_gate=True):
57
+ qc = QuantumCircuit(data_qubits)
58
+ for i in range(data_qubits):
59
+ angle = const*np.pi/(2**i)
60
+ qc.p(angle,i)
61
+ return qc.to_gate(label=" ["+str(const)+"] ") if to_gate else qc
62
+
63
+ def diffusion_operation(qc, address, flag, removable_pile):
64
+ def nim_oracle(qc,address,flag,removable_pile):
65
+
66
+ # 0001 -> 001
67
+ if removable_pile[0] != 0:
68
+ qc.x(address[1])
69
+ qc.x(address[2])
70
+ qc.mct(address[:],flag)
71
+ qc.x(address[2])
72
+ qc.x(address[1])
73
+
74
+ # 0010 -> 010
75
+ if removable_pile[1] != 0:
76
+ qc.x(address[0])
77
+ qc.x(address[2])
78
+ qc.mct(address[:],flag)
79
+ qc.x(address[2])
80
+ qc.x(address[0])
81
+
82
+ # 0100 -> 011
83
+ if removable_pile[2] != 0:
84
+ qc.x(address[2])
85
+ qc.mct(address[:],flag)
86
+ qc.x(address[2])
87
+
88
+ # 1000 -> 100
89
+ if removable_pile[3] != 0:
90
+ qc.x(address[0])
91
+ qc.x(address[1])
92
+ qc.mct(address[:],flag)
93
+ qc.x(address[1])
94
+ qc.x(address[0])
95
+
96
+
97
+ qc.x(flag)
98
+ qc.h(flag)
99
+
100
+ qc.h(address[:])
101
+ nim_oracle(qc,address,flag,removable_pile)
102
+ qc.h(address[:])
103
+ qc.x(address[:])
104
+ qc.h(address[2])
105
+ qc.mct(address[0:2], address[2])
106
+ qc.h(address[2])
107
+ qc.x(address[:])
108
+ qc.h(address[:])
109
+
110
+
111
+ def qc_process(qc,objects_to_remove,address,flag,piles,removable_pile,removable_count):
112
+
113
+ if removable_count == 0:
114
+ for i in range(len(removable_pile)):
115
+ if piles[i] > 0:
116
+ removable_pile[i] = 1
117
+ removable_count += 1
118
+
119
+ if removable_count == 4:
120
+ removable_pile[removable_pile.index(min(removable_pile))] = 0
121
+ removable_count = removable_count - 1
122
+
123
+
124
+ qft_gate = custom_qft(3).to_gate()
125
+ inverse_qft_gate = custom_qft(3).inverse().to_gate()
126
+
127
+ if removable_count == 1:
128
+ qc.swap(objects_to_remove[0],objects_to_remove[2])
129
+ qc.append(qft_gate,objects_to_remove[:])
130
+ # 0001 -> 001
131
+ if removable_pile[0] != 0:
132
+ add_gate = subroutine_add_const(3,removable_pile[0])
133
+ qc.x(address[0])
134
+ # 0010 -> 010
135
+ elif removable_pile[1] != 0:
136
+ add_gate = subroutine_add_const(3,removable_pile[1])
137
+ qc.x(address[1])
138
+ # 0100 -> 011
139
+ elif removable_pile[2] != 0:
140
+ add_gate = subroutine_add_const(3,removable_pile[2])
141
+ qc.x(address[0])
142
+ qc.x(address[1])
143
+ # 1000 -> 100
144
+ elif removable_pile[3] != 0:
145
+ add_gate = subroutine_add_const(3,removable_pile[3])
146
+ qc.x(address[2])
147
+
148
+ qc.append(add_gate,objects_to_remove[:])
149
+ qc.append(inverse_qft_gate,objects_to_remove[:])
150
+ qc.swap(objects_to_remove[0],objects_to_remove[2])
151
+
152
+ else:
153
+ diffusion_operation(qc,address, flag, removable_pile)
154
+ qc.swap(objects_to_remove[0],objects_to_remove[2])
155
+ qc.append(qft_gate,objects_to_remove[:])
156
+ for i,remove_amount in enumerate(removable_pile):
157
+ if remove_amount != 0:
158
+
159
+ bin_i = list(bin(i+1)[2:])
160
+ while len(bin_i) != 3:
161
+ bin_i.insert(0,'0')
162
+ bin_i = bin_i[::-1]
163
+ for j in range(len(bin_i)):
164
+ if bin_i[j] == '0':
165
+ qc.x(address[j])
166
+
167
+ controlled_add_gate = subroutine_add_const(3,remove_amount).control(3)
168
+ qc.append(controlled_add_gate,address[:]+objects_to_remove[:])
169
+
170
+ for j in range(len(bin_i)):
171
+ if bin_i[j] == '0':
172
+ qc.x(address[j])
173
+
174
+ qc.append(inverse_qft_gate,objects_to_remove[:])
175
+ qc.swap(objects_to_remove[0],objects_to_remove[2])
176
+
177
+ def get_quantum_move(piles, backend=None):
178
+
179
+ # REMOVE MISERE STEP
180
+ # ones = piles.count(1)
181
+ # zeros = piles.count(0)
182
+ # non_zeros = 4 - (ones+zeros)
183
+
184
+ # # all zeros except one eg (0,0,0,7) OR some zeros some ones some non_zeros
185
+ # # leave odd piles of 1s
186
+ # if non_zeros == 1:
187
+ # removable_pile, removable_count = misere_step(ones, piles)
188
+ # else:
189
+ # removable_pile, removable_count = get_piles_to_remove(piles)
190
+
191
+
192
+ removable_pile, removable_count = get_piles_to_remove(piles)
193
+ objects_to_remove = QuantumRegister(3,'piles')
194
+ flag = QuantumRegister(1,'flag')
195
+ output_piles = ClassicalRegister(3,'final_piles')
196
+ address = QuantumRegister(3,'address')
197
+ pick_pile = ClassicalRegister(3,'choose_pile')
198
+ qc = QuantumCircuit(objects_to_remove,address,flag,output_piles,pick_pile)
199
+ qc_process(qc,objects_to_remove,address,flag,piles,removable_pile,removable_count)
200
+
201
+ qc.measure(address[:],pick_pile[:])
202
+ qc.measure(objects_to_remove[:],output_piles[:])
203
+
204
+ if backend == None:
205
+ backend = BasicAer.get_backend('qasm_simulator')
206
+ # backend = provider.backends.ibmq_qasm_simulator
207
+ job = execute(qc,backend,shots=500)
208
+ result = job.result()
209
+ counts = result.get_counts()
210
+
211
+ try:
212
+ qc_move = (counts.most_frequent())
213
+ except Exception as e:
214
+ print(e)
215
+ vals = list(dict(counts).values())
216
+ max_count = max(vals,key=vals.count)
217
+ for key in counts:
218
+ if counts[key] == max_count:
219
+ qc_move = key
220
+ break
221
+
222
+ board_choice = qc_move.split(' ')[0]
223
+ board_choice = int(board_choice,2) - 1
224
+
225
+ print("Pick from:",board_choice+1)
226
+
227
+ board_state = qc_move.split(' ')[1]
228
+ board_state = board_state[::-1]
229
+ amount = int(board_state,2)
230
+ print("Amount:", amount)
231
+ return board_choice,amount
232
+
233
+
234
+
235
+
236
+
237
+
238
+
239
+
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ openai
2
+ gradio
3
+ numpy
4
+ langchain
5
+ gymnasium
6
+ qiskit
7
+ inflect