Your Name commited on
Commit
c71d758
·
1 Parent(s): b818e78
utils/__pycache__/drive.cpython-310.pyc ADDED
Binary file (3.57 kB). View file
 
utils/__pycache__/shape_predictor.cpython-310.pyc ADDED
Binary file (5.78 kB). View file
 
utils/drive.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # URL helpers, see https://github.com/NVlabs/stylegan
2
+ # ------------------------------------------------------------------------------------------
3
+
4
+ import requests
5
+ import html
6
+ import hashlib
7
+ import gdown
8
+ import glob
9
+ import os
10
+ import io
11
+ from typing import Any
12
+ import re
13
+ import uuid
14
+
15
+ weight_dic = {'afhqwild.pt': 'https://drive.google.com/file/d/14OnzO4QWaAytKXVqcfWo_o2MzoR4ygnr/view?usp=sharing',
16
+ 'afhqdog.pt': 'https://drive.google.com/file/d/16v6jPtKVlvq8rg2Sdi3-R9qZEVDgvvEA/view?usp=sharing',
17
+ 'afhqcat.pt': 'https://drive.google.com/file/d/1HXLER5R3EMI8DSYDBZafoqpX4EtyOf2R/view?usp=sharing',
18
+ 'ffhq.pt': 'https://drive.google.com/file/d/1AT6bNR2ppK8f2ETL_evT27f3R_oyWNHS/view?usp=sharing',
19
+ 'metfaces.pt': 'https://drive.google.com/file/d/16wM2PwVWzaMsRgPExvRGsq6BWw_muKbf/view?usp=sharing',
20
+ 'seg.pth': 'https://drive.google.com/file/d/1lIKvQaFKHT5zC7uS4p17O9ZpfwmwlS62/view?usp=sharing'}
21
+
22
+
23
+ def download_weight(weight_path):
24
+ gdown.download(weight_dic[os.path.basename(weight_path)],
25
+ output=weight_path, fuzzy=True)
26
+
27
+
28
+ def is_url(obj: Any) -> bool:
29
+ """Determine whether the given object is a valid URL string."""
30
+ if not isinstance(obj, str) or not "://" in obj:
31
+ return False
32
+ try:
33
+ res = requests.compat.urlparse(obj)
34
+ if not res.scheme or not res.netloc or not "." in res.netloc:
35
+ return False
36
+ res = requests.compat.urlparse(requests.compat.urljoin(obj, "/"))
37
+ if not res.scheme or not res.netloc or not "." in res.netloc:
38
+ return False
39
+ except:
40
+ return False
41
+ return True
42
+
43
+
44
+ def open_url(url: str, cache_dir: str = None, num_attempts: int = 10, verbose: bool = True,
45
+ return_path: bool = False) -> Any:
46
+ """Download the given URL and return a binary-mode file object to access the data."""
47
+ assert is_url(url)
48
+ assert num_attempts >= 1
49
+
50
+ # Lookup from cache.
51
+ url_md5 = hashlib.md5(url.encode("utf-8")).hexdigest()
52
+ if cache_dir is not None:
53
+ cache_files = glob.glob(os.path.join(cache_dir, url_md5 + "_*"))
54
+ if len(cache_files) == 1:
55
+ if (return_path):
56
+ return cache_files[0]
57
+ else:
58
+ return open(cache_files[0], "rb")
59
+
60
+ # Download.
61
+ url_name = None
62
+ url_data = None
63
+ with requests.Session() as session:
64
+ if verbose:
65
+ print("Downloading %s ..." % url, end="", flush=True)
66
+ for attempts_left in reversed(range(num_attempts)):
67
+ try:
68
+ with session.get(url) as res:
69
+ res.raise_for_status()
70
+ if len(res.content) == 0:
71
+ raise IOError("No data received")
72
+
73
+ if len(res.content) < 8192:
74
+ content_str = res.content.decode("utf-8")
75
+ if "download_warning" in res.headers.get("Set-Cookie", ""):
76
+ links = [html.unescape(link) for link in content_str.split('"') if
77
+ "export=download" in link]
78
+ if len(links) == 1:
79
+ url = requests.compat.urljoin(url, links[0])
80
+ raise IOError("Google Drive virus checker nag")
81
+ if "Google Drive - Quota exceeded" in content_str:
82
+ raise IOError("Google Drive quota exceeded")
83
+
84
+ match = re.search(r'filename="([^"]*)"', res.headers.get("Content-Disposition", ""))
85
+ url_name = match[1] if match else url
86
+ url_data = res.content
87
+ if verbose:
88
+ print(" done")
89
+ break
90
+ except:
91
+ if not attempts_left:
92
+ if verbose:
93
+ print(" failed")
94
+ raise
95
+ if verbose:
96
+ print(".", end="", flush=True)
97
+
98
+ # Save to cache.
99
+ if cache_dir is not None:
100
+ safe_name = re.sub(r"[^0-9a-zA-Z-._]", "_", url_name)
101
+ cache_file = os.path.join(cache_dir, url_md5 + "_" + safe_name)
102
+ temp_file = os.path.join(cache_dir, "tmp_" + uuid.uuid4().hex + "_" + url_md5 + "_" + safe_name)
103
+ os.makedirs(cache_dir, exist_ok=True)
104
+ with open(temp_file, "wb") as f:
105
+ f.write(url_data)
106
+ os.replace(temp_file, cache_file) # atomic
107
+ if (return_path): return cache_file
108
+
109
+ # Return data as file object.
110
+ return io.BytesIO(url_data)
utils/shape_predictor.py ADDED
@@ -0,0 +1,194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from pathlib import Path
3
+
4
+ import PIL
5
+ import dlib
6
+ import numpy as np
7
+ import scipy
8
+ import scipy.ndimage
9
+ import torch
10
+ from PIL import Image
11
+ from torchvision import transforms as T
12
+
13
+ from utils.drive import open_url
14
+
15
+ """
16
+ brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
17
+ author: lzhbrian (https://lzhbrian.me)
18
+ date: 2020.1.5
19
+ note: code is heavily borrowed from
20
+ https://github.com/NVlabs/ffhq-dataset
21
+ http://dlib.net/face_landmark_detection.py.html
22
+
23
+ requirements:
24
+ apt install cmake
25
+ conda install Pillow numpy scipy
26
+ pip install dlib
27
+ # download face landmark model from:
28
+ # http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
29
+ """
30
+
31
+
32
+ def get_landmark(filepath, predictor):
33
+ """get landmark with dlib
34
+ :return: np.array shape=(68, 2)
35
+ """
36
+ detector = dlib.get_frontal_face_detector()
37
+
38
+ img = dlib.load_rgb_image(filepath)
39
+ dets = detector(img, 1)
40
+ filepath = Path(filepath)
41
+ print(f"{filepath.name}: Number of faces detected: {len(dets)}")
42
+ shapes = [predictor(img, d) for k, d in enumerate(dets)]
43
+
44
+ lms = [np.array([[tt.x, tt.y] for tt in shape.parts()]) for shape in shapes]
45
+
46
+ return lms
47
+
48
+
49
+ def get_landmark_from_tensors(tensors: list[torch.Tensor | Image.Image | np.ndarray], predictor):
50
+ detector = dlib.get_frontal_face_detector()
51
+ transform = T.ToPILImage()
52
+ images = []
53
+ lms = []
54
+
55
+ for k, tensor in enumerate(tensors):
56
+ if isinstance(tensor, torch.Tensor):
57
+ img_pil = transform(tensor)
58
+ else:
59
+ img_pil = tensor
60
+ img = np.array(img_pil)
61
+ images.append(img_pil)
62
+
63
+ dets = detector(img, 1)
64
+ if len(dets) == 0:
65
+ raise ValueError(f"No faces detected in the image {k}.")
66
+ elif len(dets) == 1:
67
+ print(f"Number of faces detected: {len(dets)}")
68
+ else:
69
+ print(f"Number of faces detected: {len(dets)}, get largest face")
70
+
71
+ # Find the largest face
72
+ dets = sorted(dets, key=lambda det: det.width() * det.height(), reverse=True)
73
+ shape = predictor(img, dets[0])
74
+ lm = np.array([[tt.x, tt.y] for tt in shape.parts()])
75
+ lms.append(lm)
76
+
77
+ return images, lms
78
+
79
+
80
+ def align_face(data, predictor=None, is_filepath=False, return_tensors=True):
81
+ """
82
+ :param data: filepath or list torch Tensors
83
+ :return: list of PIL Images
84
+ """
85
+ if predictor is None:
86
+ predictor_path = 'shape_predictor_68_face_landmarks.dat'
87
+
88
+ if not os.path.isfile(predictor_path):
89
+ print("Downloading Shape Predictor")
90
+ data_io = open_url("https://drive.google.com/uc?id=1huhv8PYpNNKbGCLOaYUjOgR1pY5pmbJx")
91
+ with open(predictor_path, 'wb') as f:
92
+ f.write(data_io.getbuffer())
93
+
94
+ predictor = dlib.shape_predictor(predictor_path)
95
+
96
+ if is_filepath:
97
+ lms = get_landmark(data, predictor)
98
+ else:
99
+ if not isinstance(data, list):
100
+ data = [data]
101
+ images, lms = get_landmark_from_tensors(data, predictor)
102
+
103
+ imgs = []
104
+ for num_img, lm in enumerate(lms):
105
+ lm_chin = lm[0: 17] # left-right
106
+ lm_eyebrow_left = lm[17: 22] # left-right
107
+ lm_eyebrow_right = lm[22: 27] # left-right
108
+ lm_nose = lm[27: 31] # top-down
109
+ lm_nostrils = lm[31: 36] # top-down
110
+ lm_eye_left = lm[36: 42] # left-clockwise
111
+ lm_eye_right = lm[42: 48] # left-clockwise
112
+ lm_mouth_outer = lm[48: 60] # left-clockwise
113
+ lm_mouth_inner = lm[60: 68] # left-clockwise
114
+
115
+ # Calculate auxiliary vectors.
116
+ eye_left = np.mean(lm_eye_left, axis=0)
117
+ eye_right = np.mean(lm_eye_right, axis=0)
118
+ eye_avg = (eye_left + eye_right) * 0.5
119
+ eye_to_eye = eye_right - eye_left
120
+ mouth_left = lm_mouth_outer[0]
121
+ mouth_right = lm_mouth_outer[6]
122
+ mouth_avg = (mouth_left + mouth_right) * 0.5
123
+ eye_to_mouth = mouth_avg - eye_avg
124
+
125
+ # Choose oriented crop rectangle.
126
+ x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
127
+ x /= np.hypot(*x)
128
+ x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
129
+ y = np.flipud(x) * [-1, 1]
130
+ c = eye_avg + eye_to_mouth * 0.1
131
+ quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
132
+ qsize = np.hypot(*x) * 2
133
+
134
+ # read image
135
+ if is_filepath:
136
+ img = PIL.Image.open(data)
137
+ else:
138
+ img = images[num_img]
139
+
140
+ output_size = 1024
141
+ # output_size = 256
142
+ transform_size = 4096
143
+ enable_padding = True
144
+
145
+ # Shrink.
146
+ shrink = int(np.floor(qsize / output_size * 0.5))
147
+ if shrink > 1:
148
+ rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
149
+ img = img.resize(rsize, PIL.Image.ANTIALIAS)
150
+ quad /= shrink
151
+ qsize /= shrink
152
+
153
+ # Crop.
154
+ border = max(int(np.rint(qsize * 0.1)), 3)
155
+ crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
156
+ int(np.ceil(max(quad[:, 1]))))
157
+ crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
158
+ min(crop[3] + border, img.size[1]))
159
+ if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
160
+ img = img.crop(crop)
161
+ quad -= crop[0:2]
162
+
163
+ # Pad.
164
+ pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
165
+ int(np.ceil(max(quad[:, 1]))))
166
+ pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
167
+ max(pad[3] - img.size[1] + border, 0))
168
+ if enable_padding and max(pad) > border - 4:
169
+ pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
170
+ img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
171
+ h, w, _ = img.shape
172
+ y, x, _ = np.ogrid[:h, :w, :1]
173
+ mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
174
+ 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
175
+ blur = qsize * 0.02
176
+ img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
177
+ img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
178
+ img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
179
+ quad += pad[:2]
180
+
181
+ # Transform.
182
+ img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(),
183
+ PIL.Image.BILINEAR)
184
+ if output_size < transform_size:
185
+ img = img.resize((output_size, output_size), PIL.Image.LANCZOS)
186
+
187
+ # Save aligned image.
188
+ imgs.append(img)
189
+
190
+ if return_tensors:
191
+ transform = T.ToTensor()
192
+ tensors = [transform(img).clamp(0, 1) for img in imgs]
193
+ return tensors
194
+ return imgs