Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import re | |
from typing import List, Literal, Optional | |
from datasets import DatasetDict, concatenate_datasets, load_dataset | |
from .configs import DataArguments | |
DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n' + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}" | |
def apply_chat_template( | |
example, tokenizer, task: Literal["sft", "generation", "rm", "dpo"] = "sft", assistant_prefix="<|assistant|>\n" | |
): | |
def _strip_prefix(s, pattern): | |
# Use re.escape to escape any special characters in the pattern | |
return re.sub(f"^{re.escape(pattern)}", "", s) | |
if task in ["sft", "generation"]: | |
messages = example["messages"] | |
# We add an empty system message if there is none | |
if messages[0]["role"] != "system": | |
messages.insert(0, {"role": "system", "content": ""}) | |
example["text"] = tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True if task == "generation" else False | |
) | |
elif task == "rm": | |
if all(k in example.keys() for k in ("chosen", "rejected")): | |
chosen_messages = example["chosen"] | |
rejected_messages = example["rejected"] | |
# We add an empty system message if there is none | |
if chosen_messages[0]["role"] != "system": | |
chosen_messages.insert(0, {"role": "system", "content": ""}) | |
if rejected_messages[0]["role"] != "system": | |
rejected_messages.insert(0, {"role": "system", "content": ""}) | |
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False) | |
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False) | |
else: | |
raise ValueError( | |
f"Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}" | |
) | |
elif task == "dpo": | |
if all(k in example.keys() for k in ("chosen", "rejected")): | |
# Compared to reward modeling, we filter out the prompt, so the text is everything after the last assistant token | |
prompt_messages = [[msg for msg in example["chosen"] if msg["role"] == "user"][0]] | |
# Insert system message | |
if example["chosen"][0]["role"] != "system": | |
prompt_messages.insert(0, {"role": "system", "content": ""}) | |
else: | |
prompt_messages.insert(0, example["chosen"][0]) | |
# TODO: handle case where chosen/rejected also have system messages | |
chosen_messages = example["chosen"][1:] | |
rejected_messages = example["rejected"][1:] | |
example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False) | |
example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False) | |
example["text_prompt"] = tokenizer.apply_chat_template( | |
prompt_messages, tokenize=False, add_generation_prompt=True | |
) | |
example["text_chosen"] = _strip_prefix(example["text_chosen"], assistant_prefix) | |
example["text_rejected"] = _strip_prefix(example["text_rejected"], assistant_prefix) | |
else: | |
raise ValueError( | |
f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}" | |
) | |
return example | |
def get_datasets( | |
data_config: DataArguments | dict, | |
splits: List[str] = ["train", "test"], | |
shuffle: bool = True, | |
) -> DatasetDict: | |
""" | |
Loads one or more datasets with varying training set proportions. | |
Args: | |
data_config (`DataArguments` or `dict`): | |
Dataset configuration and split proportions. | |
splits (`List[str]`, *optional*, defaults to `['train', 'test']`): | |
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix. | |
shuffle (`bool`, *optional*, defaults to `True`): | |
Whether to shuffle the training data. | |
Returns | |
[`DatasetDict`]: The dataset dictionary containing the loaded datasets. | |
""" | |
if type(data_config) is DataArguments: | |
# Structure of the config to read the datasets and their mix | |
# datasets_mixer: | |
# - 'dataset1': 0.5 | |
# - 'dataset2': 0.3 | |
# - 'dataset3': 0.2 | |
dataset_mixer = data_config.dataset_mixer | |
elif type(data_config) is dict: | |
# Structure of the input is: | |
# dataset_mixer = { | |
# "dataset1": 0.5, | |
# "dataset1": 0.3, | |
# "dataset1": 0.2, | |
# } | |
dataset_mixer = data_config | |
else: | |
raise ValueError(f"Data config {data_config} not recognized.") | |
raw_datasets = mix_datasets(dataset_mixer, splits=splits, shuffle=shuffle) | |
return raw_datasets | |
def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]] = None, shuffle=True) -> DatasetDict: | |
""" | |
Loads and mixes datasets according to proportions specified in `dataset_mixer`. | |
Args: | |
dataset_mixer (`dict`): | |
Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1. | |
splits (Optional[List[str]], *optional*, defaults to `None`): | |
Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix. | |
shuffle (`bool`, *optional*, defaults to `True`): | |
Whether to shuffle the training data. | |
""" | |
raw_datasets = DatasetDict() | |
raw_train_datasets = [] | |
raw_val_datasets = [] | |
fracs = [] | |
for ds, frac in dataset_mixer.items(): | |
fracs.append(frac) | |
for split in splits: | |
if "train" in split: | |
raw_train_datasets.append( | |
load_dataset( | |
ds, | |
split=split, | |
) | |
) | |
elif "test" in split: | |
raw_val_datasets.append( | |
load_dataset( | |
ds, | |
split=split, | |
) | |
) | |
else: | |
raise ValueError(f"Split type {split} not recognized as one of test or train.") | |
if any(frac < 0 for frac in fracs): | |
raise ValueError("Dataset fractions cannot be negative.") | |
if len(raw_train_datasets) > 0: | |
train_subsets = [] | |
for dataset, frac in zip(raw_train_datasets, fracs): | |
train_subset = dataset.select(range(int(frac * len(dataset)))) | |
train_subsets.append(train_subset) | |
if shuffle: | |
raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=42) | |
else: | |
raw_datasets["train"] = concatenate_datasets(train_subsets) | |
# No subsampling for test datasets to enable fair comparison across models | |
if len(raw_val_datasets) > 0: | |
if shuffle: | |
raw_datasets["test"] = concatenate_datasets(raw_val_datasets).shuffle(seed=42) | |
else: | |
raw_datasets["test"] = concatenate_datasets(raw_val_datasets) | |
if len(raw_datasets) == 0: | |
raise ValueError( | |
f"Dataset {dataset_mixer} not recognized with split {split}. Check the dataset has been correctly formatted." | |
) | |
return raw_datasets | |