Spaces:
Build error
Build error
import os | |
import numpy as np | |
import pickle | |
import tensorflow as tf | |
from PIL import Image | |
from tensorflow.keras.preprocessing import image | |
from tensorflow.keras.layers import GlobalMaxPooling2D | |
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input | |
from sklearn.neighbors import NearestNeighbors | |
from numpy.linalg import norm | |
import gradio as gr | |
# Function to load embeddings and filenames | |
def load_data(): | |
# Load embeddings and filenames from the same directory as main.py | |
embeddings_path = os.path.join(os.path.dirname(__file__), 'embeddings.pkl') | |
filenames_path = os.path.join(os.path.dirname(__file__), 'filenames.pkl') | |
feature_list = np.array(pickle.load(open(embeddings_path, 'rb'))) | |
filenames = pickle.load(open(filenames_path, 'rb')) | |
return feature_list, filenames | |
# Load the feature list and filenames | |
feature_list, filenames = load_data() | |
# Load the pre-trained model | |
model = ResNet50(weights='imagenet', include_top=False, input_shape=(224, 224, 3)) | |
model.trainable = False | |
model = tf.keras.Sequential([ | |
model, | |
GlobalMaxPooling2D() | |
]) | |
def feature_extraction(img_path, model): | |
img = image.load_img(img_path, target_size=(224, 224)) | |
img_array = image.img_to_array(img) | |
expanded_img_array = np.expand_dims(img_array, axis=0) | |
preprocessed_img = preprocess_input(expanded_img_array) | |
result = model.predict(preprocessed_img).flatten() | |
normalized_result = result / norm(result) | |
return normalized_result | |
def recommend(features, feature_list): | |
neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean') | |
neighbors.fit(feature_list) | |
distances, indices = neighbors.kneighbors([features]) | |
return indices | |
def resize_image(img, size): | |
img = img.resize(size, Image.LANCZOS) | |
return img | |
def predict(input_image): | |
img = input_image.convert("RGB") # Ensure image is in RGB mode | |
img_array = np.array(img) | |
expanded_img_array = np.expand_dims(img_array, axis=0) | |
preprocessed_img = preprocess_input(expanded_img_array) | |
features = model.predict(preprocessed_img).flatten() | |
normalized_features = features / norm(features) | |
indices = recommend(normalized_features, feature_list) | |
result_images = [filenames[idx] for idx in indices[0]] | |
resized_images = [resize_image(Image.open(img_path), (224, 224)) for img_path in result_images] | |
return resized_images | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(type="pil", label="Upload an image"), | |
outputs=[gr.Image(type="pil", label=f"Recommendation {i+1}") for i in range(5)], | |
title="Amazon Lens", | |
description="Upload an image of clothing, and the system will recommend similar items." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |