Spaces:
Runtime error
Runtime error
| import json | |
| import torch | |
| from tqdm import tqdm | |
| from model_4rvq import PromptCondAudioDiffusion | |
| from diffusers import DDIMScheduler, DDPMScheduler | |
| import torchaudio | |
| import librosa | |
| import os | |
| import math | |
| import numpy as np | |
| # from tools.get_mulan import get_mulan | |
| from tools.get_1dvae_large import get_model | |
| import tools.torch_tools as torch_tools | |
| from safetensors.torch import load_file | |
| from audio import AudioFile | |
| class Tango: | |
| def __init__(self, \ | |
| model_path, \ | |
| layer_num=6, \ | |
| rvq_num=1, \ | |
| device="cuda:0"): | |
| self.sample_rate = 48000 | |
| scheduler_name = "configs/scheduler/stable_diffusion_2.1_largenoise_sample.json" | |
| self.device = device | |
| self.vae = get_model() | |
| self.vae = self.vae.to(device) | |
| self.vae=self.vae.eval() | |
| self.layer_num = layer_num | |
| self.MAX_DURATION = 360 | |
| main_config = { | |
| "num_channels":32, | |
| "unet_model_name":None, | |
| "unet_model_config_path":"configs/models/transformer2D_wocross_inch112_1x4_multi_large.json", | |
| "snr_gamma":None, | |
| } | |
| self.rvq_num = rvq_num | |
| # print("rvq_num: ", self.rvq_num) | |
| # exit() | |
| self.model = PromptCondAudioDiffusion(**main_config).to(device) | |
| if model_path.endswith(".safetensors"): | |
| main_weights = load_file(model_path) | |
| else: | |
| main_weights = torch.load(model_path, map_location=device) | |
| self.model.load_state_dict(main_weights, strict=False) | |
| print ("Successfully loaded checkpoint from:", model_path) | |
| self.model.eval() | |
| self.model.init_device_dtype(torch.device(device), torch.float32) | |
| print("scaling factor: ", self.model.normfeat.std) | |
| # self.scheduler = DDIMScheduler.from_pretrained( \ | |
| # scheduler_name, subfolder="scheduler") | |
| # self.scheduler = DDPMScheduler.from_pretrained( \ | |
| # scheduler_name, subfolder="scheduler") | |
| print("Successfully loaded inference scheduler from {}".format(scheduler_name)) | |
| def sound2code(self, orig_samples, batch_size=8): | |
| if(orig_samples.ndim == 2): | |
| audios = orig_samples.unsqueeze(0).to(self.device) | |
| elif(orig_samples.ndim == 3): | |
| audios = orig_samples.to(self.device) | |
| else: | |
| assert orig_samples.ndim in (2,3), orig_samples.shape | |
| audios = self.preprocess_audio(audios) | |
| audios = audios.squeeze(0) | |
| orig_length = audios.shape[-1] | |
| min_samples = int(40 * self.sample_rate) | |
| # 40秒对应10个token | |
| output_len = int(orig_length / float(self.sample_rate) * 25) + 1 | |
| # print("output_len: ", output_len) | |
| while(audios.shape[-1] < min_samples): | |
| audios = torch.cat([audios, audios], -1) | |
| int_max_len=audios.shape[-1]//min_samples+1 | |
| audios = torch.cat([audios, audios], -1) | |
| audios=audios[:,:int(int_max_len*(min_samples))] | |
| codes_list=[] | |
| audio_input = audios.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
| for audio_inx in range(0, audio_input.shape[0], batch_size): | |
| # import pdb; pdb.set_trace() | |
| codes, _, spk_embeds = self.model.fetch_codes_batch((audio_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer=self.layer_num, rvq_num=self.rvq_num) | |
| # print("codes",codes[0].shape) | |
| codes_list.append(torch.cat(codes, 1)) | |
| # print("codes_list",codes_list[0].shape) | |
| codes = torch.cat(codes_list, 0).permute(1,0,2).reshape(self.rvq_num, -1)[None] # B 3 T -> 3 B T | |
| codes=codes[:,:,:output_len] | |
| return codes | |
| def sound2code_ds(self, orig_samples, ds, batch_size=6): | |
| if(orig_samples.ndim == 2): | |
| audios = orig_samples.unsqueeze(0).to(self.device) | |
| elif(orig_samples.ndim == 3): | |
| audios = orig_samples.to(self.device) | |
| else: | |
| assert orig_samples.ndim in (2,3), orig_samples.shape | |
| audios = self.preprocess_audio(audios) | |
| audios = audios.squeeze(0) | |
| orig_length = audios.shape[-1] | |
| min_samples = int(40 * self.sample_rate) | |
| # 40秒对应10个token | |
| output_len = int(orig_length / float(self.sample_rate) * 25) + 1 | |
| # print("output_len: ", output_len) | |
| while(audios.shape[-1] < min_samples): | |
| audios = torch.cat([audios, audios], -1) | |
| int_max_len=audios.shape[-1]//min_samples+1 | |
| audios = torch.cat([audios, audios], -1) | |
| audios=audios[:,:int(int_max_len*(min_samples))] | |
| codes_list=[] | |
| audio_input = audios.reshape(2, -1, min_samples).permute(1, 0, 2).reshape(-1, 2, min_samples) | |
| for audio_inx in range(0, audio_input.shape[0], batch_size): | |
| # import pdb; pdb.set_trace() | |
| codes, _, spk_embeds = self.model.fetch_codes_batch_ds((audio_input[audio_inx:audio_inx+batch_size]), additional_feats=[],layer=self.layer_num, rvq_num=self.rvq_num, ds=ds) | |
| # print("codes",codes[0].shape) | |
| codes_list.append(torch.cat(codes, 1)) | |
| # print("codes_list",codes_list[0].shape) | |
| codes = torch.cat(codes_list, 0).permute(1,0,2).reshape(self.rvq_num, -1)[None] # B 3 T -> 3 B T | |
| codes=codes[:,:,:output_len] | |
| return codes | |
| def code2sound(self, codes, prompt=None, duration=40, guidance_scale=1.5, num_steps=20, disable_progress=False): | |
| codes = codes.to(self.device) | |
| min_samples = duration * 25 # 40ms per frame | |
| hop_samples = min_samples // 4 * 3 | |
| ovlp_samples = min_samples - hop_samples | |
| hop_frames = hop_samples | |
| ovlp_frames = ovlp_samples | |
| first_latent = torch.randn(codes.shape[0], min_samples, 64).to(self.device) | |
| first_latent_length = 0 | |
| first_latent_codes_length = 0 | |
| if(isinstance(prompt, torch.Tensor)): | |
| # prepare prompt | |
| prompt = prompt.to(self.device) | |
| if(prompt.ndim == 3): | |
| assert prompt.shape[0] == 1, prompt.shape | |
| prompt = prompt[0] | |
| elif(prompt.ndim == 1): | |
| prompt = prompt.unsqueeze(0).repeat(2,1) | |
| elif(prompt.ndim == 2): | |
| if(prompt.shape[0] == 1): | |
| prompt = prompt.repeat(2,1) | |
| if(prompt.shape[-1] < int(30 * self.sample_rate)): | |
| # if less than 30s, just choose the first 10s | |
| prompt = prompt[:,:int(10*self.sample_rate)] # limit max length to 10.24 | |
| else: | |
| # else choose from 20.48s which might includes verse or chorus | |
| prompt = prompt[:,int(20*self.sample_rate):int(30*self.sample_rate)] # limit max length to 10.24 | |
| true_latent = self.vae.encode_audio(prompt).permute(0,2,1) | |
| # print("true_latent.shape", true_latent.shape) | |
| # print("first_latent.shape", first_latent.shape) | |
| #true_latent.shape torch.Size([1, 250, 64]) | |
| # first_latent.shape torch.Size([1, 1000, 64]) | |
| first_latent[:,0:true_latent.shape[1],:] = true_latent | |
| first_latent_length = true_latent.shape[1] | |
| first_latent_codes = self.sound2code(prompt) | |
| first_latent_codes_length = first_latent_codes.shape[-1] | |
| codes = torch.cat([first_latent_codes, codes], -1) | |
| codes_len= codes.shape[-1] | |
| target_len = int((codes_len - first_latent_codes_length) / 100 * 4 * self.sample_rate) | |
| # target_len = int(codes_len / 100 * 4 * self.sample_rate) | |
| # code repeat | |
| if(codes_len < min_samples): | |
| while(codes.shape[-1] < min_samples): | |
| codes = torch.cat([codes, codes], -1) | |
| codes = codes[:,:,0:min_samples] | |
| codes_len = codes.shape[-1] | |
| if((codes_len - ovlp_samples) % hop_samples > 0): | |
| len_codes=math.ceil((codes_len - ovlp_samples) / float(hop_samples)) * hop_samples + ovlp_samples | |
| while(codes.shape[-1] < len_codes): | |
| codes = torch.cat([codes, codes], -1) | |
| codes = codes[:,:,0:len_codes] | |
| latent_length = min_samples | |
| latent_list = [] | |
| spk_embeds = torch.zeros([1, 32, 1, 32], device=codes.device) | |
| with torch.autocast(device_type="cuda", dtype=torch.float16): | |
| for sinx in range(0, codes.shape[-1]-hop_samples, hop_samples): | |
| codes_input=[] | |
| codes_input.append(codes[:,:,sinx:sinx+min_samples]) | |
| if(sinx == 0): | |
| # print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate)) | |
| incontext_length = first_latent_length | |
| latents = self.model.inference_codes(codes_input, spk_embeds, first_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
| latent_list.append(latents) | |
| else: | |
| # print("Processing {} to {}".format(sinx/self.sample_rate, (sinx + min_samples)/self.sample_rate)) | |
| true_latent = latent_list[-1][:,:,-ovlp_frames:].permute(0,2,1) | |
| print("true_latent.shape", true_latent.shape) | |
| len_add_to_1000 = 1000 - true_latent.shape[-2] | |
| # print("len_add_to_1000", len_add_to_1000) | |
| # exit() | |
| incontext_length = true_latent.shape[-2] | |
| true_latent = torch.cat([true_latent, torch.randn(true_latent.shape[0], len_add_to_1000, true_latent.shape[-1]).to(self.device)], -2) | |
| latents = self.model.inference_codes(codes_input, spk_embeds, true_latent, latent_length, incontext_length=incontext_length, additional_feats=[], guidance_scale=1.5, num_steps = num_steps, disable_progress=disable_progress, scenario='other_seg') | |
| latent_list.append(latents) | |
| latent_list = [l.float() for l in latent_list] | |
| latent_list[0] = latent_list[0][:,:,first_latent_length:] | |
| min_samples = int(min_samples * self.sample_rate // 1000 * 40) | |
| hop_samples = int(hop_samples * self.sample_rate // 1000 * 40) | |
| ovlp_samples = min_samples - hop_samples | |
| with torch.no_grad(): | |
| output = None | |
| for i in range(len(latent_list)): | |
| latent = latent_list[i] | |
| cur_output = self.vae.decode_audio(latent)[0].detach().cpu() | |
| if output is None: | |
| output = cur_output | |
| else: | |
| ov_win = torch.from_numpy(np.linspace(0, 1, ovlp_samples)[None, :]) | |
| ov_win = torch.cat([ov_win, 1 - ov_win], -1) | |
| print("output.shape", output.shape) | |
| print("ov_win.shape", ov_win.shape) | |
| output[:, -ovlp_samples:] = output[:, -ovlp_samples:] * ov_win[:, -ovlp_samples:] + cur_output[:, 0:ovlp_samples] * ov_win[:, 0:ovlp_samples] | |
| output = torch.cat([output, cur_output[:, ovlp_samples:]], -1) | |
| output = output[:, 0:target_len] | |
| return output | |
| def preprocess_audio(self, input_audios, threshold=0.8): | |
| assert len(input_audios.shape) == 3, input_audios.shape | |
| nchan = input_audios.shape[1] | |
| input_audios = input_audios.reshape(input_audios.shape[0], -1) | |
| norm_value = torch.ones_like(input_audios[:,0]) | |
| max_volume = input_audios.abs().max(dim=-1)[0] | |
| norm_value[max_volume>threshold] = max_volume[max_volume>threshold] / threshold | |
| return input_audios.reshape(input_audios.shape[0], nchan, -1)/norm_value.unsqueeze(-1).unsqueeze(-1) | |
| def sound2sound(self, sound, prompt=None, steps=50, disable_progress=False): | |
| codes = self.sound2code(sound) | |
| # print(codes.shape) | |
| # exit() | |
| wave = self.code2sound(codes, prompt, guidance_scale=1.5, num_steps=steps, disable_progress=disable_progress) | |
| # print(fname, wave.shape) | |
| return wave | |
| def file2code(self, fname): | |
| try: | |
| orig_samples, fs = torchaudio.load(fname) | |
| except: | |
| af = AudioFile(fname) | |
| orig_samples = af.read() | |
| fs = af.samplerate() | |
| orig_samples = orig_samples[0] | |
| if(fs!=self.sample_rate): | |
| orig_samples = torchaudio.functional.resample(orig_samples, fs, self.sample_rate) | |
| fs = self.sample_rate | |
| if orig_samples.shape[0] == 1: | |
| orig_samples = torch.cat([orig_samples, orig_samples], 0) | |
| return self.sound2code(orig_samples) | |
| def file2code_ds(self, fname, ds): | |
| try: | |
| orig_samples, fs = torchaudio.load(fname) | |
| except: | |
| af = AudioFile(fname) | |
| orig_samples = af.read() | |
| fs = af.samplerate() | |
| orig_samples = orig_samples[0] | |
| if(fs!=self.sample_rate): | |
| orig_samples = torchaudio.functional.resample(orig_samples, fs, self.sample_rate) | |
| fs = self.sample_rate | |
| if orig_samples.shape[0] == 1: | |
| orig_samples = torch.cat([orig_samples, orig_samples], 0) | |
| return self.sound2code_ds(orig_samples, ds) | |