Spaces:
Sleeping
Sleeping
# import firebase_admin | |
# from firebase_admin import credentials | |
# from firebase_admin import firestore | |
import io | |
from fastapi import FastAPI, File, UploadFile | |
# from werkzeug.utils import secure_filename | |
# import speech_recognition as sr | |
import subprocess | |
import os | |
import requests | |
import random | |
import pandas as pd | |
# from pydub import AudioSegment | |
from datetime import datetime | |
from datetime import date | |
# import numpy as np | |
# from sklearn.ensemble import RandomForestRegressor | |
# import shutil | |
import json | |
# from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline | |
from pydantic import BaseModel | |
from typing import Annotated | |
# from transformers import BertTokenizerFast, EncoderDecoderModel | |
import torch | |
import re | |
# from transformers import AutoTokenizer, T5ForConditionalGeneration | |
from fastapi import Form | |
# from transformers import AutoModelForSequenceClassification | |
# from transformers import TFAutoModelForSequenceClassification | |
# from transformers import AutoTokenizer, AutoConfig | |
# import numpy as np | |
# from scipy.special import softmax | |
from sentence_transformers import SentenceTransformer | |
# model = SentenceTransformer('flax-sentence-embeddings/all_datasets_v4_MiniLM-L6') | |
# model = SentenceTransformer("sentence-transformers/all-roberta-large-v1") | |
# model =SentenceTransformer("intfloat/multilingual-e5-large") | |
model = SentenceTransformer('intfloat/multilingual-e5-large') | |
class Query(BaseModel): | |
text: str | |
from fastapi import FastAPI, Request, Depends, UploadFile, File | |
from fastapi.exceptions import HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from fastapi.responses import JSONResponse | |
# now = datetime.now() | |
# UPLOAD_FOLDER = '/files' | |
# ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', | |
# 'jpg', 'jpeg', 'gif', 'ogg', 'mp3', 'wav'} | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=['*'], | |
allow_credentials=True, | |
allow_methods=['*'], | |
allow_headers=['*'], | |
) | |
# cred = credentials.Certificate('key.json') | |
# app1 = firebase_admin.initialize_app(cred) | |
# db = firestore.client() | |
# data_frame = pd.read_csv('data.csv') | |
async def startup_event(): | |
print("on startup") | |
async def get_answer(q: Query ): | |
text = q.text | |
# text_e = model.encode(text) | |
input_texts = [text] | |
embeddings = model.encode(input_texts) | |
text_e = embeddings[0] | |
dict={ } | |
c=0 | |
text_e= text_e.tolist() | |
for num in text_e: | |
dict[c]= num | |
c= c+1 | |
return dict | |
return "hello" | |