|
import asyncio |
|
import string |
|
from collections import Counter |
|
from itertools import count, tee |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
import pandas as pd |
|
import streamlit as st |
|
import torch |
|
from PIL import Image |
|
from transformers import (DetrImageProcessor, |
|
TableTransformerForObjectDetection) |
|
from vietocr.tool.config import Cfg |
|
from vietocr.tool.predictor import Predictor |
|
|
|
st.set_option('deprecation.showPyplotGlobalUse', False) |
|
st.set_page_config(layout='wide') |
|
st.title("Table Detection and Table Structure Recognition") |
|
st.write( |
|
"Implemented by MSFT team: https://github.com/microsoft/table-transformer") |
|
|
|
|
|
config = Cfg.load_config_from_name('vgg_seq2seq') |
|
config['cnn']['pretrained'] = False |
|
config['device'] = 'cpu' |
|
config['predictor']['beamsearch'] = False |
|
detector = Predictor(config) |
|
|
|
table_detection_model = TableTransformerForObjectDetection.from_pretrained( |
|
"microsoft/table-transformer-detection") |
|
|
|
table_recognition_model = TableTransformerForObjectDetection.from_pretrained( |
|
"microsoft/table-transformer-structure-recognition") |
|
|
|
|
|
def PIL_to_cv(pil_img): |
|
return cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR) |
|
|
|
|
|
def cv_to_PIL(cv_img): |
|
return Image.fromarray(cv2.cvtColor(cv_img, cv2.COLOR_BGR2RGB)) |
|
|
|
|
|
async def pytess(cell_pil_img, threshold: float = 0.5): |
|
text, prob = detector.predict(cell_pil_img, return_prob=True) |
|
if prob < threshold: |
|
return "" |
|
return text.strip() |
|
|
|
|
|
def sharpen_image(pil_img): |
|
|
|
img = PIL_to_cv(pil_img) |
|
sharpen_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) |
|
|
|
sharpen = cv2.filter2D(img, -1, sharpen_kernel) |
|
pil_img = cv_to_PIL(sharpen) |
|
return pil_img |
|
|
|
|
|
def uniquify(seq, suffs=count(1)): |
|
"""Make all the items unique by adding a suffix (1, 2, etc). |
|
Credit: https://stackoverflow.com/questions/30650474/python-rename-duplicates-in-list-with-progressive-numbers-without-sorting-list |
|
`seq` is mutable sequence of strings. |
|
`suffs` is an optional alternative suffix iterable. |
|
""" |
|
not_unique = [k for k, v in Counter(seq).items() if v > 1] |
|
|
|
suff_gens = dict(zip(not_unique, tee(suffs, len(not_unique)))) |
|
for idx, s in enumerate(seq): |
|
try: |
|
suffix = str(next(suff_gens[s])) |
|
except KeyError: |
|
continue |
|
else: |
|
seq[idx] += suffix |
|
|
|
return seq |
|
|
|
|
|
def binarizeBlur_image(pil_img): |
|
image = PIL_to_cv(pil_img) |
|
thresh = cv2.threshold(image, 150, 255, cv2.THRESH_BINARY_INV)[1] |
|
|
|
result = cv2.GaussianBlur(thresh, (5, 5), 0) |
|
result = 255 - result |
|
return cv_to_PIL(result) |
|
|
|
|
|
def td_postprocess(pil_img): |
|
''' |
|
Removes gray background from tables |
|
''' |
|
img = PIL_to_cv(pil_img) |
|
|
|
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) |
|
mask = cv2.inRange(hsv, (0, 0, 100), |
|
(255, 5, 255)) |
|
nzmask = cv2.inRange(hsv, (0, 0, 5), |
|
(255, 255, 255)) |
|
nzmask = cv2.erode(nzmask, np.ones((3, 3))) |
|
mask = mask & nzmask |
|
|
|
new_img = img.copy() |
|
new_img[np.where(mask)] = 255 |
|
|
|
return cv_to_PIL(new_img) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def table_detector(image, THRESHOLD_PROBA): |
|
''' |
|
Table detection using DEtect-object TRansformer pre-trained on 1 million tables |
|
|
|
''' |
|
|
|
feature_extractor = DetrImageProcessor(do_resize=True, |
|
size=800, |
|
max_size=800) |
|
encoding = feature_extractor(image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = table_detection_model(**encoding) |
|
|
|
probas = outputs.logits.softmax(-1)[0, :, :-1] |
|
keep = probas.max(-1).values > THRESHOLD_PROBA |
|
|
|
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) |
|
postprocessed_outputs = feature_extractor.post_process( |
|
outputs, target_sizes) |
|
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] |
|
|
|
return (probas[keep], bboxes_scaled) |
|
|
|
|
|
def table_struct_recog(image, THRESHOLD_PROBA): |
|
''' |
|
Table structure recognition using DEtect-object TRansformer pre-trained on 1 million tables |
|
''' |
|
|
|
feature_extractor = DetrImageProcessor(do_resize=True, |
|
size=1000, |
|
max_size=1000) |
|
encoding = feature_extractor(image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = table_recognition_model(**encoding) |
|
|
|
probas = outputs.logits.softmax(-1)[0, :, :-1] |
|
keep = probas.max(-1).values > THRESHOLD_PROBA |
|
|
|
target_sizes = torch.tensor(image.size[::-1]).unsqueeze(0) |
|
postprocessed_outputs = feature_extractor.post_process( |
|
outputs, target_sizes) |
|
bboxes_scaled = postprocessed_outputs[0]['boxes'][keep] |
|
|
|
return (probas[keep], bboxes_scaled) |
|
|
|
|
|
class TableExtractionPipeline(): |
|
|
|
colors = ["red", "blue", "green", "yellow", "orange", "violet"] |
|
|
|
|
|
|
|
def add_padding(self, |
|
pil_img, |
|
top, |
|
right, |
|
bottom, |
|
left, |
|
color=(255, 255, 255)): |
|
''' |
|
Image padding as part of TSR pre-processing to prevent missing table edges |
|
''' |
|
width, height = pil_img.size |
|
new_width = width + right + left |
|
new_height = height + top + bottom |
|
result = Image.new(pil_img.mode, (new_width, new_height), color) |
|
result.paste(pil_img, (left, top)) |
|
return result |
|
|
|
def plot_results_detection(self, c1, model, pil_img, prob, boxes, |
|
delta_xmin, delta_ymin, delta_xmax, delta_ymax): |
|
''' |
|
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates |
|
''' |
|
|
|
|
|
plt.imshow(pil_img) |
|
ax = plt.gca() |
|
|
|
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): |
|
cl = p.argmax() |
|
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax |
|
ax.add_patch( |
|
plt.Rectangle((xmin, ymin), |
|
xmax - xmin, |
|
ymax - ymin, |
|
fill=False, |
|
color='red', |
|
linewidth=3)) |
|
text = f'{model.config.id2label[cl.item()]}: {p[cl]:0.2f}' |
|
ax.text(xmin - 20, |
|
ymin - 50, |
|
text, |
|
fontsize=10, |
|
bbox=dict(facecolor='yellow', alpha=0.5)) |
|
plt.axis('off') |
|
c1.pyplot() |
|
|
|
def crop_tables(self, pil_img, prob, boxes, delta_xmin, delta_ymin, |
|
delta_xmax, delta_ymax): |
|
''' |
|
crop_tables and plot_results_detection must have same co-ord shifts because 1 only plots the other one updates co-ordinates |
|
''' |
|
cropped_img_list = [] |
|
|
|
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): |
|
|
|
xmin, ymin, xmax, ymax = xmin - delta_xmin, ymin - delta_ymin, xmax + delta_xmax, ymax + delta_ymax |
|
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) |
|
cropped_img_list.append(cropped_img) |
|
|
|
return cropped_img_list |
|
|
|
def generate_structure(self, c2, model, pil_img, prob, boxes, |
|
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom): |
|
''' |
|
Co-ordinates are adjusted here by 3 'pixels' |
|
To plot table pillow image and the TSR bounding boxes on the table |
|
''' |
|
|
|
|
|
plt.figure(figsize=(32, 20)) |
|
plt.imshow(pil_img) |
|
ax = plt.gca() |
|
rows = {} |
|
cols = {} |
|
idx = 0 |
|
|
|
for p, (xmin, ymin, xmax, ymax) in zip(prob, boxes.tolist()): |
|
|
|
xmin, ymin, xmax, ymax = xmin, ymin, xmax, ymax |
|
cl = p.argmax() |
|
class_text = model.config.id2label[cl.item()] |
|
text = f'{class_text}: {p[cl]:0.2f}' |
|
|
|
if (class_text |
|
== 'table row') or (class_text |
|
== 'table projected row header') or ( |
|
class_text == 'table column'): |
|
ax.add_patch( |
|
plt.Rectangle((xmin, ymin), |
|
xmax - xmin, |
|
ymax - ymin, |
|
fill=False, |
|
color=self.colors[cl.item()], |
|
linewidth=2)) |
|
ax.text(xmin - 10, |
|
ymin - 10, |
|
text, |
|
fontsize=5, |
|
bbox=dict(facecolor='yellow', alpha=0.5)) |
|
|
|
if class_text == 'table row': |
|
rows['table row.' + |
|
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, |
|
ymax + expand_rowcol_bbox_bottom) |
|
if class_text == 'table column': |
|
cols['table column.' + |
|
str(idx)] = (xmin, ymin - expand_rowcol_bbox_top, xmax, |
|
ymax + expand_rowcol_bbox_bottom) |
|
|
|
idx += 1 |
|
|
|
plt.axis('on') |
|
c2.pyplot() |
|
return rows, cols |
|
|
|
def sort_table_featuresv2(self, rows: dict, cols: dict): |
|
|
|
rows_ = { |
|
table_feature: (xmin, ymin, xmax, ymax) |
|
for table_feature, ( |
|
xmin, ymin, xmax, |
|
ymax) in sorted(rows.items(), key=lambda tup: tup[1][1]) |
|
} |
|
cols_ = { |
|
table_feature: (xmin, ymin, xmax, ymax) |
|
for table_feature, ( |
|
xmin, ymin, xmax, |
|
ymax) in sorted(cols.items(), key=lambda tup: tup[1][0]) |
|
} |
|
|
|
return rows_, cols_ |
|
|
|
def individual_table_featuresv2(self, pil_img, rows: dict, cols: dict): |
|
|
|
for k, v in rows.items(): |
|
xmin, ymin, xmax, ymax = v |
|
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) |
|
rows[k] = xmin, ymin, xmax, ymax, cropped_img |
|
|
|
for k, v in cols.items(): |
|
xmin, ymin, xmax, ymax = v |
|
cropped_img = pil_img.crop((xmin, ymin, xmax, ymax)) |
|
cols[k] = xmin, ymin, xmax, ymax, cropped_img |
|
|
|
return rows, cols |
|
|
|
def object_to_cellsv2(self, master_row: dict, cols: dict, |
|
expand_rowcol_bbox_top, expand_rowcol_bbox_bottom, |
|
padd_left): |
|
'''Removes redundant bbox for rows&columns and divides each row into cells from columns |
|
Args: |
|
|
|
Returns: |
|
|
|
|
|
''' |
|
cells_img = {} |
|
header_idx = 0 |
|
row_idx = 0 |
|
previous_xmax_col = 0 |
|
new_cols = {} |
|
new_master_row = {} |
|
previous_ymin_row = 0 |
|
new_cols = cols |
|
new_master_row = master_row |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for k_row, v_row in new_master_row.items(): |
|
|
|
_, _, _, _, row_img = v_row |
|
xmax, ymax = row_img.size |
|
xa, ya, xb, yb = 0, 0, 0, ymax |
|
row_img_list = [] |
|
|
|
|
|
for idx, kv in enumerate(new_cols.items()): |
|
k_col, v_col = kv |
|
xmin_col, _, xmax_col, _, col_img = v_col |
|
xmin_col, xmax_col = xmin_col - padd_left - 10, xmax_col - padd_left |
|
xa = xmin_col |
|
xb = xmax_col |
|
if idx == 0: |
|
xa = 0 |
|
if idx == len(new_cols) - 1: |
|
xb = xmax |
|
xa, ya, xb, yb = xa, ya, xb, yb |
|
|
|
row_img_cropped = row_img.crop((xa, ya, xb, yb)) |
|
row_img_list.append(row_img_cropped) |
|
|
|
cells_img[k_row + '.' + str(row_idx)] = row_img_list |
|
row_idx += 1 |
|
|
|
return cells_img, len(new_cols), len(new_master_row) - 1 |
|
|
|
def clean_dataframe(self, df): |
|
''' |
|
Remove irrelevant symbols that appear with tesseractOCR |
|
''' |
|
|
|
|
|
for col in df.columns: |
|
|
|
df[col] = df[col].str.replace("'", '', regex=True) |
|
df[col] = df[col].str.replace('"', '', regex=True) |
|
df[col] = df[col].str.replace(']', '', regex=True) |
|
df[col] = df[col].str.replace('[', '', regex=True) |
|
df[col] = df[col].str.replace('{', '', regex=True) |
|
df[col] = df[col].str.replace('}', '', regex=True) |
|
return df |
|
|
|
@st.cache |
|
def convert_df(self, df): |
|
return df.to_csv().encode('utf-8') |
|
|
|
def create_dataframe(self, c3, cell_ocr_res: list, max_cols: int, |
|
max_rows: int): |
|
'''Create dataframe using list of cell values of the table, also checks for valid header of dataframe |
|
Args: |
|
cell_ocr_res: list of strings, each element representing a cell in a table |
|
max_cols, max_rows: number of columns and rows |
|
Returns: |
|
dataframe : final dataframe after all pre-processing |
|
''' |
|
|
|
headers = cell_ocr_res[:max_cols] |
|
new_headers = uniquify(headers, |
|
(f' {x!s}' for x in string.ascii_lowercase)) |
|
counter = 0 |
|
|
|
cells_list = cell_ocr_res[max_cols:] |
|
df = pd.DataFrame("", index=range(0, max_rows), columns=new_headers) |
|
|
|
cell_idx = 0 |
|
for nrows in range(max_rows): |
|
for ncols in range(max_cols): |
|
df.iat[nrows, ncols] = str(cells_list[cell_idx]) |
|
cell_idx += 1 |
|
|
|
|
|
|
|
for x, col in zip(string.ascii_lowercase, new_headers): |
|
if f' {x!s}' == col: |
|
counter += 1 |
|
header_char_count = [len(col) for col in new_headers] |
|
|
|
|
|
|
|
|
|
|
|
|
|
df = self.clean_dataframe(df) |
|
|
|
c3.dataframe(df) |
|
csv = self.convert_df(df) |
|
c3.download_button("Download table", |
|
csv, |
|
"file.csv", |
|
"text/csv", |
|
key='download-csv') |
|
|
|
return df |
|
|
|
async def start_process(self, image_path: str, TD_THRESHOLD, TSR_THRESHOLD, |
|
OCR_THRESHOLD, padd_top, padd_left, padd_bottom, |
|
padd_right, delta_xmin, delta_ymin, delta_xmax, |
|
delta_ymax, expand_rowcol_bbox_top, |
|
expand_rowcol_bbox_bottom): |
|
''' |
|
Initiates process of generating pandas dataframes from raw pdf-page images |
|
|
|
''' |
|
image = Image.open(image_path).convert("RGB") |
|
probas, bboxes_scaled = table_detector(image, |
|
THRESHOLD_PROBA=TD_THRESHOLD) |
|
|
|
if bboxes_scaled.nelement() == 0: |
|
st.write('No table found in the pdf-page image') |
|
return '' |
|
|
|
|
|
|
|
c1, c2, c3 = st.columns((1, 1, 1)) |
|
|
|
self.plot_results_detection(c1, table_detection_model, image, probas, |
|
bboxes_scaled, delta_xmin, delta_ymin, |
|
delta_xmax, delta_ymax) |
|
cropped_img_list = self.crop_tables(image, probas, bboxes_scaled, |
|
delta_xmin, delta_ymin, delta_xmax, |
|
delta_ymax) |
|
|
|
for unpadded_table in cropped_img_list: |
|
|
|
table = self.add_padding(unpadded_table, padd_top, padd_right, |
|
padd_bottom, padd_left) |
|
|
|
|
|
|
|
|
|
|
|
probas, bboxes_scaled = table_struct_recog( |
|
table, THRESHOLD_PROBA=TSR_THRESHOLD) |
|
rows, cols = self.generate_structure(c2, table_recognition_model, |
|
table, probas, bboxes_scaled, |
|
expand_rowcol_bbox_top, |
|
expand_rowcol_bbox_bottom) |
|
|
|
rows, cols = self.sort_table_featuresv2(rows, cols) |
|
master_row, cols = self.individual_table_featuresv2( |
|
table, rows, cols) |
|
|
|
cells_img, max_cols, max_rows = self.object_to_cellsv2( |
|
master_row, cols, expand_rowcol_bbox_top, |
|
expand_rowcol_bbox_bottom, padd_left) |
|
|
|
sequential_cell_img_list = [] |
|
for k, img_list in cells_img.items(): |
|
for img in img_list: |
|
|
|
|
|
|
|
|
|
|
|
|
|
sequential_cell_img_list.append( |
|
pytess(cell_pil_img=img, threshold=OCR_THRESHOLD)) |
|
|
|
cell_ocr_res = await asyncio.gather(*sequential_cell_img_list) |
|
|
|
self.create_dataframe(c3, cell_ocr_res, max_cols, max_rows) |
|
st.write( |
|
'Errors in OCR is due to either quality of the image or performance of the OCR' |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
img_name = st.file_uploader("Upload an image with table(s)") |
|
st1, st2, st3 = st.columns((1, 1, 1)) |
|
TD_th = st1.slider('Table detection threshold', 0.0, 1.0, 0.8) |
|
TSR_th = st2.slider('Table structure recognition threshold', 0.0, 1.0, 0.8) |
|
OCR_th = st3.slider("Text Probs Threshold", 0.0, 1.0, 0.5) |
|
|
|
st1, st2, st3, st4 = st.columns((1, 1, 1, 1)) |
|
|
|
padd_top = st1.slider('Padding top', 0, 200, 40) |
|
padd_left = st2.slider('Padding left', 0, 200, 40) |
|
padd_right = st3.slider('Padding right', 0, 200, 40) |
|
padd_bottom = st4.slider('Padding bottom', 0, 200, 40) |
|
|
|
te = TableExtractionPipeline() |
|
|
|
if img_name is not None: |
|
asyncio.run( |
|
te.start_process(img_name, |
|
TD_THRESHOLD=TD_th, |
|
TSR_THRESHOLD=TSR_th, |
|
OCR_THRESHOLD=OCR_th, |
|
padd_top=padd_top, |
|
padd_left=padd_left, |
|
padd_bottom=padd_bottom, |
|
padd_right=padd_right, |
|
delta_xmin=0, |
|
delta_ymin=0, |
|
delta_xmax=0, |
|
delta_ymax=0, |
|
expand_rowcol_bbox_top=0, |
|
expand_rowcol_bbox_bottom=0)) |
|
|