Spaces:
Runtime error
Runtime error
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,79 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import torch
|
| 4 |
-
from datasets import load_dataset
|
| 5 |
-
from deep_translator import GoogleTranslator
|
| 6 |
-
from transformers import (
|
| 7 |
-
AutoTokenizer,
|
| 8 |
-
SpeechT5ForTextToSpeech,
|
| 9 |
-
SpeechT5HifiGan,
|
| 10 |
-
SpeechT5Processor,
|
| 11 |
-
VitsModel,
|
| 12 |
-
pipeline,
|
| 13 |
-
)
|
| 14 |
-
|
| 15 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 16 |
-
|
| 17 |
-
device = "cpu"
|
| 18 |
-
# load speech translation checkpoint
|
| 19 |
-
asr_pipe = pipeline("automatic-speech-recognition",
|
| 20 |
-
model="openai/whisper-base", device=device)
|
| 21 |
-
|
| 22 |
-
# load text-to-speech mms-tts-id model (speaker embeddings included)
|
| 23 |
-
model = VitsModel.from_pretrained("facebook/mms-tts-tel")
|
| 24 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tel")
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def translate(audio):
|
| 28 |
-
outputs = asr_pipe(audio, max_new_tokens=256,
|
| 29 |
-
generate_kwargs={"task": "translate"})
|
| 30 |
-
return outputs["text"]
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
def synthesise(text):
|
| 34 |
-
inputs = tokenizer(text=text, return_tensors="pt")
|
| 35 |
-
with torch.no_grad():
|
| 36 |
-
speech = model(**inputs).waveform
|
| 37 |
-
return speech.reshape(-1, 1).cpu()
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def speech_to_speech_translation(audio):
|
| 41 |
-
translated_text = translate(audio)
|
| 42 |
-
google_translated = GoogleTranslator(
|
| 43 |
-
source="en", target="tel").translate(translated_text)
|
| 44 |
-
synthesised_speech = synthesise(google_translated)
|
| 45 |
-
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
| 46 |
-
return 16000, synthesised_speech
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
title = "Cascaded STST"
|
| 50 |
-
description = """
|
| 51 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Indonesian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's
|
| 52 |
-
[MMS TTS IND](https://huggingface.co/facebook/mms-tts-ind) model for text-to-speech:
|
| 53 |
-

|
| 54 |
-
"""
|
| 55 |
-
|
| 56 |
-
demo = gr.Blocks()
|
| 57 |
-
|
| 58 |
-
mic_translate = gr.Interface(
|
| 59 |
-
fn=speech_to_speech_translation,
|
| 60 |
-
inputs=gr.Audio(sources="microphone", type="filepath"),
|
| 61 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 62 |
-
title=title,
|
| 63 |
-
description=description,
|
| 64 |
-
)
|
| 65 |
-
|
| 66 |
-
file_translate = gr.Interface(
|
| 67 |
-
fn=speech_to_speech_translation,
|
| 68 |
-
inputs=gr.Audio(sources="upload", type="filepath"),
|
| 69 |
-
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
| 70 |
-
examples=[["./example.wav"]],
|
| 71 |
-
title=title,
|
| 72 |
-
description=description,
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
with demo:
|
| 76 |
-
gr.TabbedInterface([mic_translate, file_translate],
|
| 77 |
-
["Microphone", "Audio File"])
|
| 78 |
-
|
| 79 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|