rishabhsabnavis commited on
Commit
1ae8b7f
·
verified ·
1 Parent(s): f9bbf89

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -79
app.py DELETED
@@ -1,79 +0,0 @@
1
- import gradio as gr
2
- import numpy as np
3
- import torch
4
- from datasets import load_dataset
5
- from deep_translator import GoogleTranslator
6
- from transformers import (
7
- AutoTokenizer,
8
- SpeechT5ForTextToSpeech,
9
- SpeechT5HifiGan,
10
- SpeechT5Processor,
11
- VitsModel,
12
- pipeline,
13
- )
14
-
15
- # device = "cuda:0" if torch.cuda.is_available() else "cpu"
16
-
17
- device = "cpu"
18
- # load speech translation checkpoint
19
- asr_pipe = pipeline("automatic-speech-recognition",
20
- model="openai/whisper-base", device=device)
21
-
22
- # load text-to-speech mms-tts-id model (speaker embeddings included)
23
- model = VitsModel.from_pretrained("facebook/mms-tts-tel")
24
- tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tel")
25
-
26
-
27
- def translate(audio):
28
- outputs = asr_pipe(audio, max_new_tokens=256,
29
- generate_kwargs={"task": "translate"})
30
- return outputs["text"]
31
-
32
-
33
- def synthesise(text):
34
- inputs = tokenizer(text=text, return_tensors="pt")
35
- with torch.no_grad():
36
- speech = model(**inputs).waveform
37
- return speech.reshape(-1, 1).cpu()
38
-
39
-
40
- def speech_to_speech_translation(audio):
41
- translated_text = translate(audio)
42
- google_translated = GoogleTranslator(
43
- source="en", target="tel").translate(translated_text)
44
- synthesised_speech = synthesise(google_translated)
45
- synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
46
- return 16000, synthesised_speech
47
-
48
-
49
- title = "Cascaded STST"
50
- description = """
51
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Indonesian. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech transcription, [Deep Translator](https://github.com/nidhaloff/deep-translator) for translation, and Meta's
52
- [MMS TTS IND](https://huggingface.co/facebook/mms-tts-ind) model for text-to-speech:
53
- ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
54
- """
55
-
56
- demo = gr.Blocks()
57
-
58
- mic_translate = gr.Interface(
59
- fn=speech_to_speech_translation,
60
- inputs=gr.Audio(sources="microphone", type="filepath"),
61
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
62
- title=title,
63
- description=description,
64
- )
65
-
66
- file_translate = gr.Interface(
67
- fn=speech_to_speech_translation,
68
- inputs=gr.Audio(sources="upload", type="filepath"),
69
- outputs=gr.Audio(label="Generated Speech", type="numpy"),
70
- examples=[["./example.wav"]],
71
- title=title,
72
- description=description,
73
- )
74
-
75
- with demo:
76
- gr.TabbedInterface([mic_translate, file_translate],
77
- ["Microphone", "Audio File"])
78
-
79
- demo.launch()