rishabh5752's picture
Upload 6 files
4c4b26c
raw
history blame
944 Bytes
import gradio as gr
import numpy as np
from tensorflow.keras.models import load_model
# Load the trained model
model = load_model('skin_model.h5')
# Define a function to make predictions
def predict(image):
# Preprocess the image
image = image / 255.0
image = np.expand_dims(image, axis=0)
# Make prediction using the model
prediction = model.predict(image)
# Get the predicted class label
if prediction[0][0] < 0.5:
label = 'benign'
else:
label = 'malignant'
return label
examples=[["benign.jpg"], ["malignant.jpg"]]
# Define a Gradio interface for user interaction
image_input = gr.inputs.Image(shape=(150, 150))
label_output = gr.outputs.Label()
iface= gr.Interface(fn=predict, inputs=image_input, outputs=label_output, examples=examples,
title="Identifying Skin Cancer", description="Predicts whether an image of skin is cancerous or not")
iface.launch()