Commit
·
ad887e6
1
Parent(s):
b1a6758
Update app.py
Browse files
app.py
CHANGED
@@ -1,70 +1,47 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from PIL import Image
|
3 |
-
import torch
|
4 |
-
from torchvision import models, transforms
|
5 |
|
6 |
-
# Load the
|
7 |
-
|
8 |
-
|
|
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
transforms.ToTensor(),
|
15 |
-
transforms.Normalize(
|
16 |
-
mean=[0.485, 0.456, 0.406],
|
17 |
-
std=[0.229, 0.224, 0.225]
|
18 |
-
),
|
19 |
-
])
|
20 |
|
21 |
-
#
|
22 |
-
|
23 |
|
24 |
-
|
25 |
-
def preprocess_image(image):
|
26 |
-
# Convert the image to RGB
|
27 |
-
image = image.convert('RGB')
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
# Add a batch dimension
|
36 |
-
image_tensor = image_tensor.unsqueeze(0)
|
37 |
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
predicted_label = class_labels[predicted_idx.item()]
|
50 |
-
|
51 |
-
return predicted_label
|
52 |
|
53 |
-
#
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
# Upload and display the image
|
59 |
-
uploaded_image = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
60 |
-
|
61 |
-
if uploaded_image is not None:
|
62 |
-
image = Image.open(uploaded_image)
|
63 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
64 |
-
|
65 |
-
# Make a prediction
|
66 |
-
predicted_label = predict(image)
|
67 |
-
st.write("Prediction:", predicted_label)
|
68 |
|
69 |
# Run the app
|
70 |
if __name__ == '__main__':
|
|
|
1 |
import streamlit as st
|
2 |
+
import pickle
|
3 |
from PIL import Image
|
|
|
|
|
4 |
|
5 |
+
# Load the pretrained model from the pickle file
|
6 |
+
model_filename = 'model.pkl'
|
7 |
+
with open(model_filename, 'rb') as file:
|
8 |
+
model = pickle.load(file)
|
9 |
|
10 |
+
# Function to make predictions
|
11 |
+
def predict_pneumonia(image):
|
12 |
+
# Preprocess the image (you may need to resize or normalize it)
|
13 |
+
# preprocess_image(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Make predictions using the loaded model
|
16 |
+
prediction = model.predict(image)
|
17 |
|
18 |
+
return prediction
|
|
|
|
|
|
|
19 |
|
20 |
+
# Streamlit app
|
21 |
+
def main():
|
22 |
+
# Set app title and layout
|
23 |
+
st.title("Pneumonia Detection")
|
24 |
+
st.markdown("---")
|
|
|
|
|
|
|
25 |
|
26 |
+
# Add an image uploader
|
27 |
+
st.header("Upload Chest X-ray Image")
|
28 |
+
uploaded_file = st.file_uploader("Choose an image", type=["jpg", "jpeg", "png"])
|
29 |
|
30 |
+
if uploaded_file is not None:
|
31 |
+
# Display the uploaded image
|
32 |
+
image = Image.open(uploaded_file)
|
33 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
34 |
|
35 |
+
# Make prediction when the user clicks the 'Predict' button
|
36 |
+
if st.button("Predict"):
|
37 |
+
# Perform prediction
|
38 |
+
prediction = predict_pneumonia(image)
|
|
|
|
|
|
|
39 |
|
40 |
+
# Display the prediction
|
41 |
+
if prediction == 1:
|
42 |
+
st.error("Prediction: Pneumonia detected")
|
43 |
+
else:
|
44 |
+
st.success("Prediction: No pneumonia detected")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
# Run the app
|
47 |
if __name__ == '__main__':
|