MedGPT / main.py
rishabh5752's picture
Upload 6 files
249ecf8
import random
import json
import pickle
import nltk
nltk.download('punkt')
nltk.download('wordnet')
nltk.download('omw-1.4')
from nltk.stem import WordNetLemmatizer
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation, Dropout
from tensorflow.keras.optimizers import SGD
import numpy as np
lemmatizer = WordNetLemmatizer()
intents = json.loads(open("intents.json").read())
words = []
classes = []
documents = []
ignore_letters = ["?", "!", ".", ","]
for intent in intents["intents"]:
for pattern in intent["patterns"]:
word_list = nltk.word_tokenize(pattern)
words.extend(word_list)
documents.append((word_list, intent["tag"]))
if intent["tag"] not in classes:
classes.append(intent["tag"])
words = [lemmatizer.lemmatize(word)
for word in words if word not in ignore_letters]
words = sorted(set(words))
classes = sorted(set(classes))
pickle.dump(words, open('words.pkl', 'wb'))
pickle.dump(classes, open('classes.pkl', 'wb'))
dataset = []
template = [0]*len(classes)
for document in documents:
bag = []
word_patterns = document[0]
word_patterns = [lemmatizer.lemmatize(word.lower())
for word in word_patterns]
for word in words:
bag.append(1) if word in word_patterns else bag.append(0)
output_row = list(template)
output_row[classes.index(document[1])] = 1
dataset.append([bag, output_row])
random.shuffle(dataset)
dataset = np.array(dataset)
train_x = list(dataset[:, 0])
train_y = list(dataset[:, 1])
model = Sequential()
model.add(Dense(256, input_shape=(len(train_x[0]),),
activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(len(train_y[0]), activation='softmax'))
sgd = SGD(learning_rate=0.01,
momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd, metrics=['accuracy'])
hist = model.fit(np.array(train_x), np.array(train_y),
epochs=200, batch_size=5, verbose=1)
model.save("chatbot_model.h5", hist)
print("Done!")