Spaces:
Build error
Build error
rishabh5752
commited on
Commit
·
7df53ef
1
Parent(s):
b09dbe8
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import pickle
|
4 |
+
|
5 |
+
# Load the pre-trained model
|
6 |
+
with open('model.pkl', 'rb') as file:
|
7 |
+
model = pickle.load(file)
|
8 |
+
|
9 |
+
# Default parameter values
|
10 |
+
default_values = [17.99, 10.38, 122.8, 1001, 0.1184, 0.2776, 0.3001, 0.1471, 0.2419, 0.07871,
|
11 |
+
1.095, 0.9053, 8.589, 153.4, 0.006399, 0.04904, 0.05373, 0.01587, 0.03003,
|
12 |
+
0.006193, 25.38, 17.33, 184.6, 2019, 0.1622, 0.6656, 0.7119, 0.2654, 0.4601, 0.1189]
|
13 |
+
|
14 |
+
# Create a DataFrame with default parameter values
|
15 |
+
default_data = pd.DataFrame([default_values],
|
16 |
+
columns=['radius_mean', 'texture_mean', 'perimeter_mean', 'area_mean',
|
17 |
+
'smoothness_mean', 'compactness_mean', 'concavity_mean',
|
18 |
+
'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
|
19 |
+
'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se',
|
20 |
+
'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
|
21 |
+
'fractal_dimension_se', 'radius_worst', 'texture_worst', 'perimeter_worst',
|
22 |
+
'area_worst', 'smoothness_worst', 'compactness_worst', 'concavity_worst',
|
23 |
+
'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst'])
|
24 |
+
|
25 |
+
# Set up the Streamlit app
|
26 |
+
st.title('Breast Cancer Prediction')
|
27 |
+
|
28 |
+
# Display the input form with default values
|
29 |
+
st.subheader('Input Parameters')
|
30 |
+
user_input = st.form(key='user_input_form')
|
31 |
+
input_data = user_input.dataframe(default_data)
|
32 |
+
|
33 |
+
# Make predictions when the 'Predict' button is clicked
|
34 |
+
if user_input.form_submit_button('Predict'):
|
35 |
+
prediction = model.predict(input_data)
|
36 |
+
prediction_label = 'Malignant' if prediction[0] == 1 else 'Benign'
|
37 |
+
st.subheader('Prediction')
|
38 |
+
st.write(f'The lesion is predicted to be: {prediction_label}')
|