Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| from tensorflow import keras | |
| from keras.models import load_model | |
| # Load the trained model | |
| model = load_model('skin_model.h5') | |
| # Define a function to make predictions | |
| def predict(image): | |
| # Preprocess the image | |
| image = image / 255.0 | |
| image = np.expand_dims(image, axis=0) | |
| # Make a prediction using the model | |
| prediction = model.predict(image) | |
| # Get the sigmoid percentage | |
| sigmoid_percentage = prediction[0][0] * 100 | |
| # Get the predicted class label | |
| if prediction[0][0] < 0.5: | |
| label = 'Benign' | |
| else: | |
| label = 'Malignant' | |
| return f"{label} ({sigmoid_percentage:.2f}%)" | |
| examples = [["benign.jpg"], ["malignant.jpg"]] | |
| # Define input and output components | |
| image_input = gr.inputs.Image(shape=(150, 150)) | |
| label_output = gr.outputs.Label() | |
| # Define a Gradio interface for user interaction | |
| iface = gr.Interface( | |
| fn=predict, | |
| inputs=image_input, | |
| outputs=label_output, | |
| examples=examples, | |
| title="Skin Cancer Classification", | |
| description="Predicts whether a Skin Lesion is Cancerous or not.", | |
| theme="default", # Choose a theme: "default", "compact", "huggingface" | |
| layout="vertical", # Choose a layout: "vertical", "horizontal", "double" | |
| live=False | |
| ) | |