StyleGAN-NADA / app.py
rinong's picture
Updated app, added video generation and model files
3a19a1a
raw
history blame
7.89 kB
import os
import torch
import gradio as gr
import os
import sys
import numpy as np
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
import os
import sys
import tempfile
import shutil
from argparse import Namespace
from pathlib import Path
import dlib
import numpy as np
import torchvision.transforms as transforms
from torchvision import utils
from PIL import Image
from model.sg2_model import Generator
from generate_videos import generate_frames, video_from_interpolations, vid_to_gif
model_dir = "models"
os.makedirs(model_dir, exist_ok=True)
models_and_paths = {"akhaliq/JoJoGAN_e4e_ffhq_encode": "e4e_ffhq_encode.pt",
"akhaliq/jojogan_dlib": "shape_predictor_68_face_landmarks.dat",
"akhaliq/jojogan-stylegan2-ffhq-config-f": f"{model_dir}/base.pt"}
def get_models():
for repo_id, file_path in models_and_paths:
hf_hub_download(repo_id=repo_id, filename=file_path)
model_list = ['base'] + [Path(model_ckpt).stem for model_ckpt in os.listdir(model_dir) if not 'base' in model_ckpt]
return model_list
model_list = get_models()
class ImageEditor(object):
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
latent_size = 512
n_mlp = 8
channel_mult = 2
model_size = 1024
self.generators = {}
for model in model_list:
g_ema = Generator(
model_size, latent_size, n_mlp, channel_multiplier=channel_mult
).to(self.device)
checkpoint = torch.load(f"models/{model}.pt")
g_ema.load_state_dict(checkpoint['g_ema'])
self.generators[model] = g_ema
self.experiment_args = {"model_path": "e4e_ffhq_encode.pt"}
self.experiment_args["transform"] = transforms.Compose(
[
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
self.resize_dims = (256, 256)
model_path = self.experiment_args["model_path"]
ckpt = torch.load(model_path, map_location="cpu")
opts = ckpt["opts"]
opts["checkpoint_path"] = model_path
opts = Namespace(**opts)
self.e4e_net = pSp(opts)
self.e4e_net.eval()
self.e4e_net.cuda()
self.shape_predictor = dlib.shape_predictor(
models_and_paths["akhaliq/jojogan_dlib"]
)
print("setup complete")
def get_style_list(self):
style_list = ['all', 'list - enter below']
for key in self.generators:
style_list.append(key)
return style_list
def predict(
self,
input, # Input image path
output_style, # Which output style do you want to use?
style_list, # Comma seperated list of models to use. Only accepts models from the output_style list
generate_video, # Generate a video instead of an output image
with_editing, # Apply latent space editing to the generated video
video_format # Choose gif to display in browser, mp4 for higher-quality downloadable video
):
if output_style == 'all':
styles = model_list
elif output_style == 'list - enter below':
styles = style_list.split(",")
for style in styles:
if style not in model_list:
raise ValueError(f"Encountered style '{style}' in the style_list which is not an available option.")
else:
styles = [output_style]
# @title Align image
input_image = self.run_alignment(str(input))
input_image = input_image.resize(self.resize_dims)
img_transforms = self.experiment_args["transform"]
transformed_image = img_transforms(input_image)
with torch.no_grad():
images, latents = self.run_on_batch(transformed_image.unsqueeze(0))
result_image, latent = images[0], latents[0]
inverted_latent = latent.unsqueeze(0).unsqueeze(1)
out_dir = Path(tempfile.mkdtemp())
out_path = out_dir / "out.jpg"
generators = [self.generators[style] for style in styles]
if not generate_video:
with torch.no_grad():
img_list = []
for g_ema in generators:
img, _ = g_ema(inverted_latent, input_is_latent=True, truncation=1, randomize_noise=False)
img_list.append(img)
out_img = torch.cat(img_list, axis=0)
utils.save_image(out_img, out_path, nrow=int(np.sqrt(out_img.size(0))), normalize=True, scale_each=True, range=(-1, 1))
return Path(out_path)
return self.generate_vid(generators, inverted_latent, out_dir, video_format, with_editing)
def generate_vid(self, generators, latent, out_dir, video_format, with_editing):
np_latent = latent.squeeze(0).cpu().detach().numpy()
args = {
'fps': 24,
'target_latents': None,
'edit_directions': None,
'unedited_frames': 0 if with_editing else 40 * (len(generators) - 1)
}
args = Namespace(**args)
with tempfile.TemporaryDirectory() as dirpath:
generate_frames(args, np_latent, generators, dirpath)
video_from_interpolations(args.fps, dirpath)
gen_path = Path(dirpath) / "out.mp4"
out_path = out_dir / f"out.{video_format}"
if video_format == 'gif':
vid_to_gif(gen_path, out_dir, scale=256, fps=args.fps)
else:
shutil.copy2(gen_path, out_path)
return out_path
def run_alignment(self, image_path):
aligned_image = align_face(filepath=image_path, predictor=self.shape_predictor)
print("Aligned image has shape: {}".format(aligned_image.size))
return aligned_image
def run_on_batch(self, inputs):
images, latents = self.e4e_net(
inputs.to("cuda").float(), randomize_noise=False, return_latents=True
)
return images, latents
editor = ImageEditor()
title = "StyleGAN-NADA"
description = "Gradio Demo for StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators (SIGGRAPH 2022). To use it, upload your image and select a target style. More information about the paper and training new models can be found below."
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.00946' target='_blank'>StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators</a> | <a href='https://stylegan-nada.github.io/' target='_blank'>Project Page</a> | <a href='https://github.com/rinongal/StyleGAN-nada' target='_blank'>Code</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=rinong_sgnada' alt='visitor badge'></center>"
gr.Interface(editor.predict, [gr.inputs.Image(type="pil"),
gr.inputs.Dropdown(choices=editor.get_style_list(), type="value", default='base', label="Model"),
gr.inputs.Textbox(lines=1, placeholder=None, default="joker,anime,modigliani", label="Style List", optional=True),
gr.inputs.Checkbox(default=False, label="Generate Video?", optional=False),
gr.inputs.Checkbox(default=False, label="With Editing?", optional=False),
gr.inputs.Radio(choices=["gif", "mp4"], type="value", default='mp4', label="Video Format")],
gr.outputs.Image(type="file"), title=title, description=description, article=article, allow_flagging=False, allow_screenshot=False).launch()