Rimjhim Mittal
commited on
Commit
β’
93d9fe9
1
Parent(s):
7a4280c
made a much better UI
Browse files- pages/3_π_Arc_Functions.py β Arc_Functions.py +3 -2
- pages/2_πΎ_Newton_Law_Of_Cooling.py β Newton_Law_Of_Cooling.py +6 -7
- pages/1_βΏ_Sine_Approximator.py β Sine_Approximator.py +44 -31
- __pycache__/Arc_Functions.cpython-311.pyc +0 -0
- __pycache__/Newton_Law_Of_Cooling.cpython-311.pyc +0 -0
- __pycache__/Sine_Approximator.cpython-311.pyc +0 -0
- app.py +6 -1
- arc_functions +10 -0
- arc_functions.png +0 -0
- markdowns/css.md +2 -2
- model_graph +5 -0
- model_graph.png +0 -0
- models/__pycache__/arc_functions.cpython-311.pyc +0 -0
- models/__pycache__/execute.cpython-311.pyc +0 -0
- models/arc_functions.py +0 -1
- pages/1_Model_Category_1.py +24 -0
- pages/2_Model_Category_2.py +24 -0
- sine_approximator +16 -0
- sine_approximator.json +230 -0
- sine_approximator.onnx +0 -0
- sine_approximator.png +0 -0
- sine_approximator.yaml +153 -0
pages/3_π_Arc_Functions.py β Arc_Functions.py
RENAMED
@@ -13,13 +13,14 @@ def run_streamlit_app():
|
|
13 |
st.markdown(introduction)
|
14 |
input_value = st.number_input("Input Value for arctan_node", value=1.0)
|
15 |
|
16 |
-
|
|
|
17 |
image_path = main(input_value=input_value, mode="graph")
|
18 |
if image_path and os.path.exists(image_path):
|
19 |
st.image(image_path, caption="Model Graph Visualization")
|
20 |
else:
|
21 |
st.error("Error generating the graph.")
|
22 |
-
|
23 |
results = main(input_value=input_value, mode="run")
|
24 |
if results:
|
25 |
st.write("### Results")
|
|
|
13 |
st.markdown(introduction)
|
14 |
input_value = st.number_input("Input Value for arctan_node", value=1.0)
|
15 |
|
16 |
+
col1, col2 = st.columns(2)
|
17 |
+
with col1:
|
18 |
image_path = main(input_value=input_value, mode="graph")
|
19 |
if image_path and os.path.exists(image_path):
|
20 |
st.image(image_path, caption="Model Graph Visualization")
|
21 |
else:
|
22 |
st.error("Error generating the graph.")
|
23 |
+
with col2:
|
24 |
results = main(input_value=input_value, mode="run")
|
25 |
if results:
|
26 |
st.write("### Results")
|
pages/2_πΎ_Newton_Law_Of_Cooling.py β Newton_Law_Of_Cooling.py
RENAMED
@@ -38,12 +38,12 @@ def run_simulation(mod_graph, duration=100, dt=0.1, mode=None, mod = None):
|
|
38 |
|
39 |
def main():
|
40 |
st.title("βοΈ Newton Cooling Model Simulator")
|
41 |
-
with open("./markdowns/css.md") as file:
|
42 |
-
|
43 |
with open("./markdowns/introduction.md") as file:
|
44 |
introduction = file.read()
|
45 |
st.markdown(introduction)
|
46 |
-
st.markdown(custom_styles, unsafe_allow_html=True)
|
47 |
|
48 |
|
49 |
if "mod_graph" not in st.session_state:
|
@@ -57,9 +57,8 @@ def main():
|
|
57 |
with col2:
|
58 |
duration = st.number_input("Duration", value=100)
|
59 |
dt = st.number_input("Time Step", value=0.1)
|
60 |
-
|
61 |
-
|
62 |
-
if st.button(button_label):
|
63 |
update_model_parameters(cooling_coeff, T_a)
|
64 |
times, temperatures = run_simulation(st.session_state.mod_graph, duration, dt, mode="run", mod = st.session_state.mod)
|
65 |
times = times[1:] # Adjust based on your needs
|
@@ -73,7 +72,7 @@ def main():
|
|
73 |
# temperatures = temperatures # Adjust based on your needs
|
74 |
st.line_chart(chart_data, use_container_width=True, height=400, x="Time (s)", y="Temperature (K)")
|
75 |
st.session_state.run_once = True
|
76 |
-
|
77 |
# from IPython.display import Image
|
78 |
image_path = run_simulation(st.session_state.mod_graph, duration, dt, mode="graph", mod=st.session_state.mod)
|
79 |
st.image(image_path, caption="Model Graph Visualization")
|
|
|
38 |
|
39 |
def main():
|
40 |
st.title("βοΈ Newton Cooling Model Simulator")
|
41 |
+
# with open("./markdowns/css.md") as file:
|
42 |
+
# custom_styles = file.read()
|
43 |
with open("./markdowns/introduction.md") as file:
|
44 |
introduction = file.read()
|
45 |
st.markdown(introduction)
|
46 |
+
# st.markdown(custom_styles, unsafe_allow_html=True)
|
47 |
|
48 |
|
49 |
if "mod_graph" not in st.session_state:
|
|
|
57 |
with col2:
|
58 |
duration = st.number_input("Duration", value=100)
|
59 |
dt = st.number_input("Time Step", value=0.1)
|
60 |
+
col1, col2 = st.columns(2)
|
61 |
+
with col1:
|
|
|
62 |
update_model_parameters(cooling_coeff, T_a)
|
63 |
times, temperatures = run_simulation(st.session_state.mod_graph, duration, dt, mode="run", mod = st.session_state.mod)
|
64 |
times = times[1:] # Adjust based on your needs
|
|
|
72 |
# temperatures = temperatures # Adjust based on your needs
|
73 |
st.line_chart(chart_data, use_container_width=True, height=400, x="Time (s)", y="Temperature (K)")
|
74 |
st.session_state.run_once = True
|
75 |
+
with col2:
|
76 |
# from IPython.display import Image
|
77 |
image_path = run_simulation(st.session_state.mod_graph, duration, dt, mode="graph", mod=st.session_state.mod)
|
78 |
st.image(image_path, caption="Model Graph Visualization")
|
pages/1_βΏ_Sine_Approximator.py β Sine_Approximator.py
RENAMED
@@ -8,7 +8,7 @@ import onnx
|
|
8 |
import pandas as pd
|
9 |
import os
|
10 |
import sys
|
11 |
-
|
12 |
graphviz_bin_dir = os.path.join(sys.prefix, "bin")
|
13 |
os.environ["PATH"] += os.pathsep + graphviz_bin_dir
|
14 |
|
@@ -26,6 +26,9 @@ class SineApproximator(nn.Module):
|
|
26 |
def forward(self, x):
|
27 |
return self.network(x)
|
28 |
|
|
|
|
|
|
|
29 |
def train_sine_model(model, epochs=1000, learning_rate=0.01):
|
30 |
X = torch.unsqueeze(torch.linspace(-np.pi, np.pi, 200), dim=1)
|
31 |
Y = torch.sin(X)
|
@@ -33,6 +36,10 @@ def train_sine_model(model, epochs=1000, learning_rate=0.01):
|
|
33 |
loss_func = nn.MSELoss()
|
34 |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
35 |
|
|
|
|
|
|
|
|
|
36 |
for epoch in range(epochs):
|
37 |
prediction = model(X)
|
38 |
loss = loss_func(prediction, Y)
|
@@ -41,10 +48,15 @@ def train_sine_model(model, epochs=1000, learning_rate=0.01):
|
|
41 |
loss.backward()
|
42 |
optimizer.step()
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
def export_to_onnx(model):
|
50 |
dummy_input = torch.tensor([[0.0]])
|
@@ -72,6 +84,7 @@ def plot_sine_curve(model):
|
|
72 |
|
73 |
|
74 |
def main():
|
|
|
75 |
# Streamlit UI setup
|
76 |
st.title("Sine Function Approximator")
|
77 |
|
@@ -89,34 +102,34 @@ def main():
|
|
89 |
epochs = st.slider("Epochs", min_value=0, max_value=100, value=50)
|
90 |
graph_col1, graph_col2 = st.columns(2)
|
91 |
with graph_col1:
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
with graph_col2:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
if __name__ == "__main__":
|
121 |
main()
|
122 |
|
|
|
8 |
import pandas as pd
|
9 |
import os
|
10 |
import sys
|
11 |
+
import time
|
12 |
graphviz_bin_dir = os.path.join(sys.prefix, "bin")
|
13 |
os.environ["PATH"] += os.pathsep + graphviz_bin_dir
|
14 |
|
|
|
26 |
def forward(self, x):
|
27 |
return self.network(x)
|
28 |
|
29 |
+
from time import sleep
|
30 |
+
|
31 |
+
# @st.cache(allow_output_mutation=True, suppress_st_warning=True)
|
32 |
def train_sine_model(model, epochs=1000, learning_rate=0.01):
|
33 |
X = torch.unsqueeze(torch.linspace(-np.pi, np.pi, 200), dim=1)
|
34 |
Y = torch.sin(X)
|
|
|
36 |
loss_func = nn.MSELoss()
|
37 |
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
38 |
|
39 |
+
progress_bar = st.progress(0)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
for epoch in range(epochs):
|
44 |
prediction = model(X)
|
45 |
loss = loss_func(prediction, Y)
|
|
|
48 |
loss.backward()
|
49 |
optimizer.step()
|
50 |
|
51 |
+
# Update progress bar and status text
|
52 |
+
progress_bar.progress((epoch + 1) / epochs)
|
53 |
|
54 |
+
|
55 |
+
# Dummy sleep to simulate long-running task
|
56 |
+
sleep(0.01)
|
57 |
+
|
58 |
+
progress_bar.empty()
|
59 |
+
return model
|
60 |
|
61 |
def export_to_onnx(model):
|
62 |
dummy_input = torch.tensor([[0.0]])
|
|
|
84 |
|
85 |
|
86 |
def main():
|
87 |
+
|
88 |
# Streamlit UI setup
|
89 |
st.title("Sine Function Approximator")
|
90 |
|
|
|
102 |
epochs = st.slider("Epochs", min_value=0, max_value=100, value=50)
|
103 |
graph_col1, graph_col2 = st.columns(2)
|
104 |
with graph_col1:
|
105 |
+
status_text = st.empty()
|
106 |
+
model = SineApproximator()
|
107 |
+
train_sine_model(model, epochs, learning_rate)
|
108 |
+
export_to_onnx(model)
|
109 |
+
plot_sine_curve(model)
|
110 |
+
onnx_model = onnx.load("./sine_approximator.onnx")
|
111 |
+
mdf_model = onnx_to_mdf(onnx_model)
|
112 |
+
mdf_model.to_json_file("sine_approximator.json")
|
113 |
+
mdf_model.to_yaml_file("sine_approximator.yaml")
|
114 |
+
status_text.success("Training complete.")
|
115 |
with graph_col2:
|
116 |
+
onnx_model = onnx.load("sine_approximator.onnx")
|
117 |
+
mdf_model = onnx_to_mdf(onnx_model)
|
118 |
+
mdf_model.to_graph_image(
|
119 |
+
engine="dot",
|
120 |
+
output_format="png",
|
121 |
+
view_on_render=False,
|
122 |
+
level=3,
|
123 |
+
filename_root="sine_approximator",
|
124 |
+
only_warn_on_fail=True,
|
125 |
+
)
|
126 |
+
# st.image("sine_approximator.png", caption="Model Graph Visualization")
|
127 |
+
from IPython.display import Image
|
128 |
+
Image(filename="sine_approximator.png")
|
129 |
+
image_path = "./sine_approximator.png"
|
130 |
+
st.success('Graph generated successfully.')
|
131 |
+
st.image(image_path, caption="Model Graph Visualization")
|
132 |
+
|
133 |
if __name__ == "__main__":
|
134 |
main()
|
135 |
|
__pycache__/Arc_Functions.cpython-311.pyc
ADDED
Binary file (2.72 kB). View file
|
|
__pycache__/Newton_Law_Of_Cooling.cpython-311.pyc
ADDED
Binary file (6.95 kB). View file
|
|
__pycache__/Sine_Approximator.cpython-311.pyc
ADDED
Binary file (8.57 kB). View file
|
|
app.py
CHANGED
@@ -31,11 +31,16 @@ with col3:
|
|
31 |
st.image(gmail_icon, width=30)
|
32 |
st.markdown("[Email](mailto:rimjhimittal2003@gmail.com)", unsafe_allow_html=True)
|
33 |
|
|
|
|
|
|
|
|
|
34 |
def main():
|
|
|
35 |
with open("./markdowns/css.md") as file:
|
36 |
custom_styles = file.read()
|
37 |
st.markdown(custom_styles, unsafe_allow_html=True)
|
38 |
-
|
39 |
|
40 |
if __name__ == "__main__":
|
41 |
main()
|
|
|
31 |
st.image(gmail_icon, width=30)
|
32 |
st.markdown("[Email](mailto:rimjhimittal2003@gmail.com)", unsafe_allow_html=True)
|
33 |
|
34 |
+
def hide_pages(pages_to_hide):
|
35 |
+
for page in pages_to_hide:
|
36 |
+
st.sidebar.markdown(f"## {page}")
|
37 |
+
|
38 |
def main():
|
39 |
+
hide_pages(["Arc_Functions", "Newton Cooling Model Simulator", "Arc Functions"])
|
40 |
with open("./markdowns/css.md") as file:
|
41 |
custom_styles = file.read()
|
42 |
st.markdown(custom_styles, unsafe_allow_html=True)
|
43 |
+
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
main()
|
arc_functions
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
digraph arc_functions {
|
2 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
3 |
+
arctan_node [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>arctan_node</b></td></tr><tr><td><font color="#1666ff">input_value</font> = 1.0</td></tr><tr><td><font color="#1666ff">arctan_result</font> = <i>arctan</i>(<font color="#1666ff">input_value</font>, 0.4)</td></tr><tr><td><i>arctan(variable0, scale) = scale * arctan(variable0)</i></td></tr><tr><td><font color="#cc3355">output</font> = <font color="#1666ff">arctan_result</font> </td></tr></table>>]
|
4 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
5 |
+
arccos_node [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>arccos_node</b></td></tr><tr><td><font color="#188855">input_from_arctan</font> </td></tr><tr><td><font color="#1666ff">arccos_result</font> = <i>arccos</i>(<font color="#188855">input_from_arctan</font>, 0.3)</td></tr><tr><td><i>arccos(variable0, scale) = scale * arccos(variable0)</i></td></tr><tr><td><font color="#cc3355">output</font> = <font color="#1666ff">arccos_result</font> </td></tr></table>>]
|
6 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
7 |
+
arcsin_node [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>arcsin_node</b></td></tr><tr><td><font color="#188855">input_from_arccos</font> </td></tr><tr><td><font color="#1666ff">arcsin_result</font> = <i>arcsin</i>(<font color="#188855">input_from_arccos</font>, 0.2)</td></tr><tr><td><i>arcsin(variable0, scale) = scale * arcsin(variable0)</i></td></tr><tr><td><font color="#cc3355">output</font> = <font color="#1666ff">arcsin_result</font> </td></tr></table>>]
|
8 |
+
arctan_node -> arccos_node [label=<h (<font color="#cc3355">output</font> -> <font color="#188855">input_from_arctan</font>)> arrowhead=empty]
|
9 |
+
arccos_node -> arcsin_node [label=<i (<font color="#cc3355">output</font> -> <font color="#188855">input_from_arccos</font>)> arrowhead=empty]
|
10 |
+
}
|
arc_functions.png
ADDED
markdowns/css.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
<style>
|
2 |
-
|
3 |
.stApp {
|
4 |
background-image: linear-gradient(to right, rgba(13, 19, 48, 1) 0%, rgba(30, 37, 88, 1) 50%, #084349 100%), url("https://dl.dropboxusercontent.com/scl/fi/vrlu5xm5uh7nj6tor97my/glow_bg-7-1.png?rlkey=raqq4j45y0ogyuvu4rgvjcc3a&dl=1");
|
5 |
background-size: cover, cover;
|
@@ -39,7 +39,7 @@
|
|
39 |
background-image: linear-gradient(to right, #5456F7, #27B1FF) !important;
|
40 |
border: none !important;
|
41 |
color: white !important;
|
42 |
-
}
|
43 |
|
44 |
</style>
|
45 |
|
|
|
1 |
<style>
|
2 |
+
/*
|
3 |
.stApp {
|
4 |
background-image: linear-gradient(to right, rgba(13, 19, 48, 1) 0%, rgba(30, 37, 88, 1) 50%, #084349 100%), url("https://dl.dropboxusercontent.com/scl/fi/vrlu5xm5uh7nj6tor97my/glow_bg-7-1.png?rlkey=raqq4j45y0ogyuvu4rgvjcc3a&dl=1");
|
5 |
background-size: cover, cover;
|
|
|
39 |
background-image: linear-gradient(to right, #5456F7, #27B1FF) !important;
|
40 |
border: none !important;
|
41 |
color: white !important;
|
42 |
+
} */
|
43 |
|
44 |
</style>
|
45 |
|
model_graph
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
digraph cooling_process {
|
2 |
+
graph [rankdir=LR]
|
3 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
4 |
+
node1 [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>node1</b></td></tr><tr><td><font color="#1666ff">cooling_coeff</font> = 0.1</td></tr><tr><td><font color="#1666ff">T_a</font> = 20</td></tr><tr><td><b><font color="#1666ff">T_curr</font></b> = <i>def init value:</i> 90, <i>d/dt:</i> <font color="#1666ff">dT_dt</font></td></tr><tr><td><b><font color="#1666ff">dT_dt</font></b> = -<font color="#1666ff">cooling_coeff</font>*(<font color="#1666ff">T_curr</font> - <font color="#1666ff">T_a</font>)<i>def init value:</i> 0</td></tr><tr><td><font color="#cc3355">out_port</font> = <font color="#1666ff">T_curr</font> </td></tr></table>>]
|
5 |
+
}
|
model_graph.png
ADDED
models/__pycache__/arc_functions.cpython-311.pyc
CHANGED
Binary files a/models/__pycache__/arc_functions.cpython-311.pyc and b/models/__pycache__/arc_functions.cpython-311.pyc differ
|
|
models/__pycache__/execute.cpython-311.pyc
ADDED
Binary file (58 kB). View file
|
|
models/arc_functions.py
CHANGED
@@ -87,7 +87,6 @@ def main(input_value=1.0, mode=None):
|
|
87 |
view_on_render=False,
|
88 |
level=3,
|
89 |
filename_root="arc_functions",
|
90 |
-
is_horizontal=True
|
91 |
)
|
92 |
|
93 |
return image_path
|
|
|
87 |
view_on_render=False,
|
88 |
level=3,
|
89 |
filename_root="arc_functions",
|
|
|
90 |
)
|
91 |
|
92 |
return image_path
|
pages/1_Model_Category_1.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from importlib import import_module
|
3 |
+
|
4 |
+
# Page configuration
|
5 |
+
st.set_page_config(page_title="Dynamic Model Selection", layout="wide")
|
6 |
+
|
7 |
+
# Model names and the corresponding module functions to be imported
|
8 |
+
model_functions = {
|
9 |
+
"Sine_Approximator": "main",
|
10 |
+
"Arc_Functions": "run_streamlit_app"
|
11 |
+
}
|
12 |
+
|
13 |
+
# Define the sidebar selection dropdown
|
14 |
+
model_name = st.sidebar.selectbox('Choose a model:', options=list(model_functions.keys()))
|
15 |
+
|
16 |
+
# Function to dynamically import and run the selected model's main function
|
17 |
+
def run_model(model_key):
|
18 |
+
module = import_module(model_key)
|
19 |
+
main_function = getattr(module, model_functions[model_key])
|
20 |
+
main_function()
|
21 |
+
|
22 |
+
# Run the selected model when the button is pressed
|
23 |
+
if st.sidebar.button('Run Model'):
|
24 |
+
run_model(model_name)
|
pages/2_Model_Category_2.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from importlib import import_module
|
3 |
+
|
4 |
+
# Page configuration
|
5 |
+
st.set_page_config(page_title="Dynamic Model Selection", layout="wide")
|
6 |
+
|
7 |
+
# Model names and the corresponding module functions to be imported
|
8 |
+
model_functions = {
|
9 |
+
"Newton_Law_Of_Cooling": "main",
|
10 |
+
"Arc_Functions": "run_streamlit_app"
|
11 |
+
}
|
12 |
+
|
13 |
+
# Define the sidebar selection dropdown
|
14 |
+
model_name = st.sidebar.selectbox('Choose a model:', options=list(model_functions.keys()))
|
15 |
+
|
16 |
+
# Function to dynamically import and run the selected model's main function
|
17 |
+
def run_model(model_key):
|
18 |
+
module = import_module(model_key)
|
19 |
+
main_function = getattr(module, model_functions[model_key])
|
20 |
+
main_function()
|
21 |
+
|
22 |
+
# Run the selected model when the button is pressed
|
23 |
+
if st.sidebar.button('Run Model'):
|
24 |
+
run_model(model_name)
|
sine_approximator
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
digraph main_graph {
|
2 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
3 |
+
"/network/network.0/Gemm" [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>/network/network.0/Gemm</b></td></tr><tr><td><font color="#188855">input</font> (shape: (1, 1), type: float)</td></tr><tr><td><font color="#188855">network.0.weight</font> (shape: (64, 1), type: float)</td></tr><tr><td><font color="#188855">network.0.bias</font> (shape: (64,), type: float)</td></tr><tr><td><font color="#1666ff">alpha</font> = 1.0</td></tr><tr><td><font color="#1666ff">beta</font> = 1.0</td></tr><tr><td><font color="#1666ff">transB</font> = 1</td></tr><tr><td><font color="#1666ff">/network/network.0/Gemm</font> = <i>onnx::Gemm</i>(<font color="#188855">input</font>, <font color="#188855">network.0.weight</font>, <font color="#188855">network.0.bias</font>)</td></tr><tr><td><i>onnx::Gemm(A, B, C) = onnx_ops.gemm(A, B, C, alpha, beta, transA, transB)</i></td></tr><tr><td><font color="#cc3355">_network_network.0_Gemm_output_0</font> = <font color="#1666ff">/network/network.0/Gemm</font> </td></tr></table>>]
|
4 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
5 |
+
"/network/network.1/Relu" [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>/network/network.1/Relu</b></td></tr><tr><td><font color="#188855">_network_network.0_Gemm_output_0</font> (shape: (1, 64), type: float)</td></tr><tr><td><font color="#1666ff">/network/network.1/Relu</font> = <i>onnx::Relu</i>(<font color="#188855">_network_network.0_Gemm_output_0</font>)</td></tr><tr><td><i>onnx::Relu(X) = onnx_ops.relu(X)</i></td></tr><tr><td><font color="#cc3355">_network_network.1_Relu_output_0</font> = <font color="#1666ff">/network/network.1/Relu</font> </td></tr></table>>]
|
6 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
7 |
+
"/network/network.2/Gemm" [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>/network/network.2/Gemm</b></td></tr><tr><td><font color="#188855">_network_network.1_Relu_output_0</font> (shape: (1, 64), type: float)</td></tr><tr><td><font color="#188855">network.2.weight</font> (shape: (64, 64), type: float)</td></tr><tr><td><font color="#188855">network.2.bias</font> (shape: (64,), type: float)</td></tr><tr><td><font color="#1666ff">alpha</font> = 1.0</td></tr><tr><td><font color="#1666ff">beta</font> = 1.0</td></tr><tr><td><font color="#1666ff">transB</font> = 1</td></tr><tr><td><font color="#1666ff">/network/network.2/Gemm</font> = <i>onnx::Gemm</i>(<font color="#188855">_network_network.1_Relu_output_0</font>, <font color="#188855">network.2.weight</font>, <font color="#188855">network.2.bias</font>)</td></tr><tr><td><i>onnx::Gemm(A, B, C) = onnx_ops.gemm(A, B, C, alpha, beta, transA, transB)</i></td></tr><tr><td><font color="#cc3355">_network_network.2_Gemm_output_0</font> = <font color="#1666ff">/network/network.2/Gemm</font> </td></tr></table>>]
|
8 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
9 |
+
"/network/network.3/Relu" [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>/network/network.3/Relu</b></td></tr><tr><td><font color="#188855">_network_network.2_Gemm_output_0</font> (shape: (1, 64), type: float)</td></tr><tr><td><font color="#1666ff">/network/network.3/Relu</font> = <i>onnx::Relu</i>(<font color="#188855">_network_network.2_Gemm_output_0</font>)</td></tr><tr><td><i>onnx::Relu(X) = onnx_ops.relu(X)</i></td></tr><tr><td><font color="#cc3355">_network_network.3_Relu_output_0</font> = <font color="#1666ff">/network/network.3/Relu</font> </td></tr></table>>]
|
10 |
+
node [color="#444444" fontcolor="#444444" penwidth=1 shape=box style=rounded]
|
11 |
+
"/network/network.4/Gemm" [label=<<table border="0" cellborder="0"><tr><td colspan="2"><b>/network/network.4/Gemm</b></td></tr><tr><td><font color="#188855">_network_network.3_Relu_output_0</font> (shape: (1, 64), type: float)</td></tr><tr><td><font color="#188855">network.4.weight</font> (shape: (1, 64), type: float)</td></tr><tr><td><font color="#188855">network.4.bias</font> (shape: (1,), type: float)</td></tr><tr><td><font color="#1666ff">alpha</font> = 1.0</td></tr><tr><td><font color="#1666ff">beta</font> = 1.0</td></tr><tr><td><font color="#1666ff">transB</font> = 1</td></tr><tr><td><font color="#1666ff">/network/network.4/Gemm</font> = <i>onnx::Gemm</i>(<font color="#188855">_network_network.3_Relu_output_0</font>, <font color="#188855">network.4.weight</font>, <font color="#188855">network.4.bias</font>)</td></tr><tr><td><i>onnx::Gemm(A, B, C) = onnx_ops.gemm(A, B, C, alpha, beta, transA, transB)</i></td></tr><tr><td><font color="#cc3355">output</font> = <font color="#1666ff">/network/network.4/Gemm</font> </td></tr></table>>]
|
12 |
+
"/network/network.0/Gemm" -> "/network/network.1/Relu" [label=</network/network.0/Gemm._network_network.0_Gemm_output_0_/network/network.1/Relu._network_network.0_Gemm_output_0 (<font color="#cc3355">_network_network.0_Gemm_output_0</font> -> <font color="#188855">_network_network.0_Gemm_output_0</font>)> arrowhead=empty]
|
13 |
+
"/network/network.1/Relu" -> "/network/network.2/Gemm" [label=</network/network.1/Relu._network_network.1_Relu_output_0_/network/network.2/Gemm._network_network.1_Relu_output_0 (<font color="#cc3355">_network_network.1_Relu_output_0</font> -> <font color="#188855">_network_network.1_Relu_output_0</font>)> arrowhead=empty]
|
14 |
+
"/network/network.2/Gemm" -> "/network/network.3/Relu" [label=</network/network.2/Gemm._network_network.2_Gemm_output_0_/network/network.3/Relu._network_network.2_Gemm_output_0 (<font color="#cc3355">_network_network.2_Gemm_output_0</font> -> <font color="#188855">_network_network.2_Gemm_output_0</font>)> arrowhead=empty]
|
15 |
+
"/network/network.3/Relu" -> "/network/network.4/Gemm" [label=</network/network.3/Relu._network_network.3_Relu_output_0_/network/network.4/Gemm._network_network.3_Relu_output_0 (<font color="#cc3355">_network_network.3_Relu_output_0</font> -> <font color="#188855">_network_network.3_Relu_output_0</font>)> arrowhead=empty]
|
16 |
+
}
|
sine_approximator.json
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ONNX Model": {
|
3 |
+
"format": "ModECI MDF v0.4",
|
4 |
+
"generating_application": "Python modeci-mdf v0.4.9",
|
5 |
+
"graphs": {
|
6 |
+
"main_graph": {
|
7 |
+
"nodes": {
|
8 |
+
"/network/network.0/Gemm": {
|
9 |
+
"input_ports": {
|
10 |
+
"input": {
|
11 |
+
"shape": [
|
12 |
+
1,
|
13 |
+
1
|
14 |
+
],
|
15 |
+
"type": "float"
|
16 |
+
},
|
17 |
+
"network.0.weight": {
|
18 |
+
"shape": [
|
19 |
+
64,
|
20 |
+
1
|
21 |
+
],
|
22 |
+
"type": "float"
|
23 |
+
},
|
24 |
+
"network.0.bias": {
|
25 |
+
"shape": [
|
26 |
+
64
|
27 |
+
],
|
28 |
+
"type": "float"
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"parameters": {
|
32 |
+
"alpha": {
|
33 |
+
"value": 1.0
|
34 |
+
},
|
35 |
+
"beta": {
|
36 |
+
"value": 1.0
|
37 |
+
},
|
38 |
+
"transB": {
|
39 |
+
"value": 1
|
40 |
+
},
|
41 |
+
"/network/network.0/Gemm": {
|
42 |
+
"function": "onnx::Gemm",
|
43 |
+
"args": {
|
44 |
+
"A": "input",
|
45 |
+
"B": "network.0.weight",
|
46 |
+
"C": "network.0.bias"
|
47 |
+
}
|
48 |
+
}
|
49 |
+
},
|
50 |
+
"output_ports": {
|
51 |
+
"_network_network.0_Gemm_output_0": {
|
52 |
+
"value": "/network/network.0/Gemm"
|
53 |
+
}
|
54 |
+
}
|
55 |
+
},
|
56 |
+
"/network/network.1/Relu": {
|
57 |
+
"input_ports": {
|
58 |
+
"_network_network.0_Gemm_output_0": {
|
59 |
+
"shape": [
|
60 |
+
1,
|
61 |
+
64
|
62 |
+
],
|
63 |
+
"type": "float"
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"parameters": {
|
67 |
+
"/network/network.1/Relu": {
|
68 |
+
"function": "onnx::Relu",
|
69 |
+
"args": {
|
70 |
+
"X": "_network_network.0_Gemm_output_0"
|
71 |
+
}
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"output_ports": {
|
75 |
+
"_network_network.1_Relu_output_0": {
|
76 |
+
"value": "/network/network.1/Relu"
|
77 |
+
}
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"/network/network.2/Gemm": {
|
81 |
+
"input_ports": {
|
82 |
+
"_network_network.1_Relu_output_0": {
|
83 |
+
"shape": [
|
84 |
+
1,
|
85 |
+
64
|
86 |
+
],
|
87 |
+
"type": "float"
|
88 |
+
},
|
89 |
+
"network.2.weight": {
|
90 |
+
"shape": [
|
91 |
+
64,
|
92 |
+
64
|
93 |
+
],
|
94 |
+
"type": "float"
|
95 |
+
},
|
96 |
+
"network.2.bias": {
|
97 |
+
"shape": [
|
98 |
+
64
|
99 |
+
],
|
100 |
+
"type": "float"
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"parameters": {
|
104 |
+
"alpha": {
|
105 |
+
"value": 1.0
|
106 |
+
},
|
107 |
+
"beta": {
|
108 |
+
"value": 1.0
|
109 |
+
},
|
110 |
+
"transB": {
|
111 |
+
"value": 1
|
112 |
+
},
|
113 |
+
"/network/network.2/Gemm": {
|
114 |
+
"function": "onnx::Gemm",
|
115 |
+
"args": {
|
116 |
+
"A": "_network_network.1_Relu_output_0",
|
117 |
+
"B": "network.2.weight",
|
118 |
+
"C": "network.2.bias"
|
119 |
+
}
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"output_ports": {
|
123 |
+
"_network_network.2_Gemm_output_0": {
|
124 |
+
"value": "/network/network.2/Gemm"
|
125 |
+
}
|
126 |
+
}
|
127 |
+
},
|
128 |
+
"/network/network.3/Relu": {
|
129 |
+
"input_ports": {
|
130 |
+
"_network_network.2_Gemm_output_0": {
|
131 |
+
"shape": [
|
132 |
+
1,
|
133 |
+
64
|
134 |
+
],
|
135 |
+
"type": "float"
|
136 |
+
}
|
137 |
+
},
|
138 |
+
"parameters": {
|
139 |
+
"/network/network.3/Relu": {
|
140 |
+
"function": "onnx::Relu",
|
141 |
+
"args": {
|
142 |
+
"X": "_network_network.2_Gemm_output_0"
|
143 |
+
}
|
144 |
+
}
|
145 |
+
},
|
146 |
+
"output_ports": {
|
147 |
+
"_network_network.3_Relu_output_0": {
|
148 |
+
"value": "/network/network.3/Relu"
|
149 |
+
}
|
150 |
+
}
|
151 |
+
},
|
152 |
+
"/network/network.4/Gemm": {
|
153 |
+
"input_ports": {
|
154 |
+
"_network_network.3_Relu_output_0": {
|
155 |
+
"shape": [
|
156 |
+
1,
|
157 |
+
64
|
158 |
+
],
|
159 |
+
"type": "float"
|
160 |
+
},
|
161 |
+
"network.4.weight": {
|
162 |
+
"shape": [
|
163 |
+
1,
|
164 |
+
64
|
165 |
+
],
|
166 |
+
"type": "float"
|
167 |
+
},
|
168 |
+
"network.4.bias": {
|
169 |
+
"shape": [
|
170 |
+
1
|
171 |
+
],
|
172 |
+
"type": "float"
|
173 |
+
}
|
174 |
+
},
|
175 |
+
"parameters": {
|
176 |
+
"alpha": {
|
177 |
+
"value": 1.0
|
178 |
+
},
|
179 |
+
"beta": {
|
180 |
+
"value": 1.0
|
181 |
+
},
|
182 |
+
"transB": {
|
183 |
+
"value": 1
|
184 |
+
},
|
185 |
+
"/network/network.4/Gemm": {
|
186 |
+
"function": "onnx::Gemm",
|
187 |
+
"args": {
|
188 |
+
"A": "_network_network.3_Relu_output_0",
|
189 |
+
"B": "network.4.weight",
|
190 |
+
"C": "network.4.bias"
|
191 |
+
}
|
192 |
+
}
|
193 |
+
},
|
194 |
+
"output_ports": {
|
195 |
+
"output": {
|
196 |
+
"value": "/network/network.4/Gemm"
|
197 |
+
}
|
198 |
+
}
|
199 |
+
}
|
200 |
+
},
|
201 |
+
"edges": {
|
202 |
+
"/network/network.0/Gemm._network_network.0_Gemm_output_0_/network/network.1/Relu._network_network.0_Gemm_output_0": {
|
203 |
+
"sender": "/network/network.0/Gemm",
|
204 |
+
"receiver": "/network/network.1/Relu",
|
205 |
+
"sender_port": "_network_network.0_Gemm_output_0",
|
206 |
+
"receiver_port": "_network_network.0_Gemm_output_0"
|
207 |
+
},
|
208 |
+
"/network/network.1/Relu._network_network.1_Relu_output_0_/network/network.2/Gemm._network_network.1_Relu_output_0": {
|
209 |
+
"sender": "/network/network.1/Relu",
|
210 |
+
"receiver": "/network/network.2/Gemm",
|
211 |
+
"sender_port": "_network_network.1_Relu_output_0",
|
212 |
+
"receiver_port": "_network_network.1_Relu_output_0"
|
213 |
+
},
|
214 |
+
"/network/network.2/Gemm._network_network.2_Gemm_output_0_/network/network.3/Relu._network_network.2_Gemm_output_0": {
|
215 |
+
"sender": "/network/network.2/Gemm",
|
216 |
+
"receiver": "/network/network.3/Relu",
|
217 |
+
"sender_port": "_network_network.2_Gemm_output_0",
|
218 |
+
"receiver_port": "_network_network.2_Gemm_output_0"
|
219 |
+
},
|
220 |
+
"/network/network.3/Relu._network_network.3_Relu_output_0_/network/network.4/Gemm._network_network.3_Relu_output_0": {
|
221 |
+
"sender": "/network/network.3/Relu",
|
222 |
+
"receiver": "/network/network.4/Gemm",
|
223 |
+
"sender_port": "_network_network.3_Relu_output_0",
|
224 |
+
"receiver_port": "_network_network.3_Relu_output_0"
|
225 |
+
}
|
226 |
+
}
|
227 |
+
}
|
228 |
+
}
|
229 |
+
}
|
230 |
+
}
|
sine_approximator.onnx
CHANGED
Binary files a/sine_approximator.onnx and b/sine_approximator.onnx differ
|
|
sine_approximator.png
CHANGED
sine_approximator.yaml
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ONNX Model:
|
2 |
+
format: ModECI MDF v0.4
|
3 |
+
generating_application: Python modeci-mdf v0.4.9
|
4 |
+
graphs:
|
5 |
+
main_graph:
|
6 |
+
nodes:
|
7 |
+
/network/network.0/Gemm:
|
8 |
+
input_ports:
|
9 |
+
input:
|
10 |
+
shape:
|
11 |
+
- 1
|
12 |
+
- 1
|
13 |
+
type: float
|
14 |
+
network.0.weight:
|
15 |
+
shape:
|
16 |
+
- 64
|
17 |
+
- 1
|
18 |
+
type: float
|
19 |
+
network.0.bias:
|
20 |
+
shape:
|
21 |
+
- 64
|
22 |
+
type: float
|
23 |
+
parameters:
|
24 |
+
alpha:
|
25 |
+
value: 1.0
|
26 |
+
beta:
|
27 |
+
value: 1.0
|
28 |
+
transB:
|
29 |
+
value: 1
|
30 |
+
/network/network.0/Gemm:
|
31 |
+
function: onnx::Gemm
|
32 |
+
args:
|
33 |
+
A: input
|
34 |
+
B: network.0.weight
|
35 |
+
C: network.0.bias
|
36 |
+
output_ports:
|
37 |
+
_network_network.0_Gemm_output_0:
|
38 |
+
value: /network/network.0/Gemm
|
39 |
+
/network/network.1/Relu:
|
40 |
+
input_ports:
|
41 |
+
_network_network.0_Gemm_output_0:
|
42 |
+
shape:
|
43 |
+
- 1
|
44 |
+
- 64
|
45 |
+
type: float
|
46 |
+
parameters:
|
47 |
+
/network/network.1/Relu:
|
48 |
+
function: onnx::Relu
|
49 |
+
args:
|
50 |
+
X: _network_network.0_Gemm_output_0
|
51 |
+
output_ports:
|
52 |
+
_network_network.1_Relu_output_0:
|
53 |
+
value: /network/network.1/Relu
|
54 |
+
/network/network.2/Gemm:
|
55 |
+
input_ports:
|
56 |
+
_network_network.1_Relu_output_0:
|
57 |
+
shape:
|
58 |
+
- 1
|
59 |
+
- 64
|
60 |
+
type: float
|
61 |
+
network.2.weight:
|
62 |
+
shape:
|
63 |
+
- 64
|
64 |
+
- 64
|
65 |
+
type: float
|
66 |
+
network.2.bias:
|
67 |
+
shape:
|
68 |
+
- 64
|
69 |
+
type: float
|
70 |
+
parameters:
|
71 |
+
alpha:
|
72 |
+
value: 1.0
|
73 |
+
beta:
|
74 |
+
value: 1.0
|
75 |
+
transB:
|
76 |
+
value: 1
|
77 |
+
/network/network.2/Gemm:
|
78 |
+
function: onnx::Gemm
|
79 |
+
args:
|
80 |
+
A: _network_network.1_Relu_output_0
|
81 |
+
B: network.2.weight
|
82 |
+
C: network.2.bias
|
83 |
+
output_ports:
|
84 |
+
_network_network.2_Gemm_output_0:
|
85 |
+
value: /network/network.2/Gemm
|
86 |
+
/network/network.3/Relu:
|
87 |
+
input_ports:
|
88 |
+
_network_network.2_Gemm_output_0:
|
89 |
+
shape:
|
90 |
+
- 1
|
91 |
+
- 64
|
92 |
+
type: float
|
93 |
+
parameters:
|
94 |
+
/network/network.3/Relu:
|
95 |
+
function: onnx::Relu
|
96 |
+
args:
|
97 |
+
X: _network_network.2_Gemm_output_0
|
98 |
+
output_ports:
|
99 |
+
_network_network.3_Relu_output_0:
|
100 |
+
value: /network/network.3/Relu
|
101 |
+
/network/network.4/Gemm:
|
102 |
+
input_ports:
|
103 |
+
_network_network.3_Relu_output_0:
|
104 |
+
shape:
|
105 |
+
- 1
|
106 |
+
- 64
|
107 |
+
type: float
|
108 |
+
network.4.weight:
|
109 |
+
shape:
|
110 |
+
- 1
|
111 |
+
- 64
|
112 |
+
type: float
|
113 |
+
network.4.bias:
|
114 |
+
shape:
|
115 |
+
- 1
|
116 |
+
type: float
|
117 |
+
parameters:
|
118 |
+
alpha:
|
119 |
+
value: 1.0
|
120 |
+
beta:
|
121 |
+
value: 1.0
|
122 |
+
transB:
|
123 |
+
value: 1
|
124 |
+
/network/network.4/Gemm:
|
125 |
+
function: onnx::Gemm
|
126 |
+
args:
|
127 |
+
A: _network_network.3_Relu_output_0
|
128 |
+
B: network.4.weight
|
129 |
+
C: network.4.bias
|
130 |
+
output_ports:
|
131 |
+
output:
|
132 |
+
value: /network/network.4/Gemm
|
133 |
+
edges:
|
134 |
+
/network/network.0/Gemm._network_network.0_Gemm_output_0_/network/network.1/Relu._network_network.0_Gemm_output_0:
|
135 |
+
sender: /network/network.0/Gemm
|
136 |
+
receiver: /network/network.1/Relu
|
137 |
+
sender_port: _network_network.0_Gemm_output_0
|
138 |
+
receiver_port: _network_network.0_Gemm_output_0
|
139 |
+
/network/network.1/Relu._network_network.1_Relu_output_0_/network/network.2/Gemm._network_network.1_Relu_output_0:
|
140 |
+
sender: /network/network.1/Relu
|
141 |
+
receiver: /network/network.2/Gemm
|
142 |
+
sender_port: _network_network.1_Relu_output_0
|
143 |
+
receiver_port: _network_network.1_Relu_output_0
|
144 |
+
/network/network.2/Gemm._network_network.2_Gemm_output_0_/network/network.3/Relu._network_network.2_Gemm_output_0:
|
145 |
+
sender: /network/network.2/Gemm
|
146 |
+
receiver: /network/network.3/Relu
|
147 |
+
sender_port: _network_network.2_Gemm_output_0
|
148 |
+
receiver_port: _network_network.2_Gemm_output_0
|
149 |
+
/network/network.3/Relu._network_network.3_Relu_output_0_/network/network.4/Gemm._network_network.3_Relu_output_0:
|
150 |
+
sender: /network/network.3/Relu
|
151 |
+
receiver: /network/network.4/Gemm
|
152 |
+
sender_port: _network_network.3_Relu_output_0
|
153 |
+
receiver_port: _network_network.3_Relu_output_0
|