rimasalshehri commited on
Commit
05002be
1 Parent(s): da84461

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -63
app.py DELETED
@@ -1,63 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """demo.ipynb
3
- Automatically generated by Colab.
4
- Original file is located at
5
- https://colab.research.google.com/drive/10nAdNOzeCbnza9ZenZqOLtvBYn8BKlk5
6
- """
7
-
8
- import streamlit as st
9
-
10
- from PIL import Image
11
- import numpy as np
12
- from joblib import load
13
- from skimage.transform import resize
14
- import os
15
-
16
-
17
-
18
-
19
- def load_model():
20
- # Ensure the model path is correct and accessible from your current directory
21
- model_path = 'svm_model3.joblib' # Update this path to where you've saved your model
22
- if os.path.exists(model_path):
23
- model = load(model_path)
24
- st.write("Model loaded successfully!")
25
- else:
26
- st.error("Model file not found.")
27
- return model
28
-
29
- def classify_image(image, model):
30
- image = np.array(image.convert('RGB'))
31
- image_resized = resize(image, (128, 128), anti_aliasing=True)
32
- image_reshaped = image_resized.reshape(-1, image_resized.shape[-1])
33
- prediction = model.predict(image_reshaped)
34
- return prediction[0]
35
-
36
-
37
- model = load_model() # Load the model on startup
38
-
39
- # Mapping of Monk classes to colors
40
- class_colors= {
41
- '1': [2, 3, 4],
42
- '2': [5, 6],
43
- '3': [7, 8],
44
- '4': [9, 10],
45
- }
46
-
47
-
48
- # Function to display the Monk class color
49
- def display_monk_class_color(prediction):
50
- color = monk_colors.get(prediction, 'gray') # Default to gray if class not found
51
- st.write(f"Monk Class: {prediction}")
52
- st.markdown(f"<div style='width:100px; height:50px; background-color:{color};'></div>", unsafe_allow_html=True)
53
-
54
- st.title('Skin Tone Classification')
55
-
56
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
57
- if uploaded_file is not None:
58
- image = Image.open(uploaded_file)
59
- st.image(image, caption='Uploaded Image.', use_column_width=True)
60
-
61
- if st.button('Classify'):
62
- prediction = classify_image(image, model)
63
- #display_monk_class_color(prediction)