Spaces:
Runtime error
Runtime error
rimasalshehri
commited on
Commit
•
91fb813
1
Parent(s):
b51d1fa
Creatapp.py
Browse files
app.py
ADDED
@@ -0,0 +1,1446 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""SkinToneClassification.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1l-efXmdbhvkKnkvTtvWlzNqunkONzr7i
|
8 |
+
|
9 |
+
# 1. Setup
|
10 |
+
|
11 |
+
## 1.1 Installing Necessary Libraries
|
12 |
+
"""
|
13 |
+
|
14 |
+
!pip install git+https://github.com/FacePerceiver/facer.git@main
|
15 |
+
!pip install timm
|
16 |
+
|
17 |
+
!git clone https://github.com/FacePerceiver/facer.git
|
18 |
+
|
19 |
+
pip install tensorflow-addons
|
20 |
+
|
21 |
+
pip install keras-tuner
|
22 |
+
|
23 |
+
pip install git+https://github.com/qubvel/classification_models.git
|
24 |
+
|
25 |
+
!pip install joblib
|
26 |
+
|
27 |
+
"""## 1.2 Importing Libraries"""
|
28 |
+
|
29 |
+
from google.colab import drive
|
30 |
+
import os
|
31 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
32 |
+
import shutil
|
33 |
+
import numpy as np
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import torch
|
36 |
+
from torch.utils.data import Dataset, DataLoader
|
37 |
+
from torchvision import transforms, utils
|
38 |
+
import facer
|
39 |
+
from torchvision.transforms.functional import to_pil_image, to_tensor
|
40 |
+
from torch import nn, optim
|
41 |
+
from torchvision import models
|
42 |
+
import torch.nn.functional as F
|
43 |
+
from sklearn.svm import SVC
|
44 |
+
from sklearn.metrics import accuracy_score
|
45 |
+
from sklearn.preprocessing import LabelEncoder
|
46 |
+
from sklearn.model_selection import GridSearchCV
|
47 |
+
import torch.nn as nn
|
48 |
+
import torch.optim as optim
|
49 |
+
import torch.nn.functional as F
|
50 |
+
from torch.optim.lr_scheduler import StepLR
|
51 |
+
import cupy as cp
|
52 |
+
from sklearn.metrics import classification_report, accuracy_score
|
53 |
+
from sklearn.metrics import f1_score
|
54 |
+
from torchsummary import summary
|
55 |
+
import seaborn as sns
|
56 |
+
from torch.optim.lr_scheduler import ReduceLROnPlateau
|
57 |
+
from sklearn.metrics import confusion_matrix, classification_report, accuracy_score
|
58 |
+
import cv2
|
59 |
+
from sklearn.metrics import precision_score, recall_score, f1_score, accuracy_score
|
60 |
+
from torch.optim import Adam
|
61 |
+
from collections import defaultdict
|
62 |
+
import random
|
63 |
+
from sklearn.model_selection import train_test_split
|
64 |
+
import itertools
|
65 |
+
import tensorflow as tf
|
66 |
+
from tensorflow.keras.layers import Layer, Conv2D, BatchNormalization, ReLU, MaxPooling2D, GlobalAveragePooling2D, Dense, Dropout
|
67 |
+
from tensorflow.keras import Sequential
|
68 |
+
from tensorflow.keras.optimizers import Adam
|
69 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
70 |
+
from tensorflow.keras.metrics import Precision, Recall
|
71 |
+
import tensorflow_addons as tfa
|
72 |
+
from tensorflow.keras.utils import to_categorical
|
73 |
+
from kerastuner import RandomSearch, Hyperband, Objective
|
74 |
+
from tensorflow.keras.callbacks import ReduceLROnPlateau
|
75 |
+
from tensorflow.keras.applications import ResNet50
|
76 |
+
from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Input
|
77 |
+
from tensorflow.keras.models import Model
|
78 |
+
from keras_tuner.tuners import RandomSearch
|
79 |
+
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score as f1_metric
|
80 |
+
import keras_tuner as kt
|
81 |
+
from tensorflow.keras.applications import VGG16
|
82 |
+
from keras_tuner import HyperParameters
|
83 |
+
from tensorflow.keras.regularizers import l2
|
84 |
+
from classification_models.tfkeras import Classifiers
|
85 |
+
from joblib import dump, load
|
86 |
+
|
87 |
+
"""# 2. Data Loading
|
88 |
+
|
89 |
+
## 2.1 Load each dataset
|
90 |
+
"""
|
91 |
+
|
92 |
+
drive.mount('/content/drive')
|
93 |
+
|
94 |
+
SkinTone_Dataset_Path = '/content/drive/MyDrive/Senior Project/Dataset/Skin Tone Dataset' # SkinTone Dataset
|
95 |
+
|
96 |
+
"""# 3. Data Preprocessing
|
97 |
+
|
98 |
+
## 3.1 EDA, cleaning, and splitting.
|
99 |
+
"""
|
100 |
+
|
101 |
+
def convert_to_jpg(directory):
|
102 |
+
# Walk through all files and subdirectories in the directory
|
103 |
+
for subdir, dirs, files in os.walk(directory):
|
104 |
+
for file in files:
|
105 |
+
filepath = os.path.join(subdir, file)
|
106 |
+
if not filepath.lower().endswith('.jpg'):
|
107 |
+
try:
|
108 |
+
img = Image.open(filepath)
|
109 |
+
# Define the new filename with .jpg extension
|
110 |
+
new_filepath = os.path.splitext(filepath)[0] + '.jpg'
|
111 |
+
# Convert and save the image under the new file name
|
112 |
+
img.convert('RGB').save(new_filepath, 'JPEG')
|
113 |
+
# Remove the original file and keep the .jpg version
|
114 |
+
os.remove(filepath)
|
115 |
+
print(f"Converted and saved {new_filepath}")
|
116 |
+
except Exception as e:
|
117 |
+
print(f"Failed to convert {filepath}: {e}")
|
118 |
+
|
119 |
+
#convert_to_jpg(SkinTone_Dataset_Path)
|
120 |
+
|
121 |
+
def rename_images(dataset_path):
|
122 |
+
img_index = 1 # Initialize the counter outside the loop to continue incrementing
|
123 |
+
for subdir, dirs, files in os.walk(dataset_path):
|
124 |
+
class_name = os.path.basename(subdir) # Get the class name from the directory name
|
125 |
+
if class_name:
|
126 |
+
print(f"Processing {subdir}...")
|
127 |
+
for file in files:
|
128 |
+
filepath = os.path.join(subdir, file)
|
129 |
+
if filepath.lower().endswith('.jpg'):
|
130 |
+
new_filename = f"{img_index}_{class_name}.jpg"
|
131 |
+
new_filepath = os.path.join(subdir, new_filename)
|
132 |
+
try:
|
133 |
+
os.rename(filepath, new_filepath) # Rename the file
|
134 |
+
print(f"Renamed {filepath} to {new_filepath}")
|
135 |
+
img_index += 1 # Increment the index for each file processed
|
136 |
+
except Exception as e:
|
137 |
+
print(f"Failed to rename {filepath}: {e}")
|
138 |
+
else:
|
139 |
+
print(f"Skipped {filepath} (not a .jpg)")
|
140 |
+
|
141 |
+
#rename_images(SkinTone_Dataset_Path)
|
142 |
+
|
143 |
+
def collect_images(base_path):
|
144 |
+
all_images = []
|
145 |
+
for root, dirs, files in os.walk(base_path):
|
146 |
+
for file in files:
|
147 |
+
if file.lower().endswith(('.png', '.jpg', '.jpeg')):
|
148 |
+
all_images.append(os.path.join(root, file))
|
149 |
+
return all_images
|
150 |
+
|
151 |
+
class SkinToneDataset(Dataset):
|
152 |
+
def __init__(self, image_paths, labels, transform=None):
|
153 |
+
self.image_paths = image_paths
|
154 |
+
self.labels = labels
|
155 |
+
self.transform = transform
|
156 |
+
self.class_to_index = {class_name: index for index, class_name in enumerate(sorted(set(labels)))}
|
157 |
+
|
158 |
+
def __getitem__(self, idx):
|
159 |
+
image_path = self.image_paths[idx]
|
160 |
+
image = Image.open(image_path).convert('RGB')
|
161 |
+
if self.transform:
|
162 |
+
image = self.transform(image)
|
163 |
+
|
164 |
+
label = self.class_to_index[self.labels[idx]] # Convert class name to integer
|
165 |
+
return image, label
|
166 |
+
|
167 |
+
def __len__(self):
|
168 |
+
return len(self.image_paths)
|
169 |
+
|
170 |
+
def get_train_transforms():
|
171 |
+
"""Define and return a series of transformations for the training set."""
|
172 |
+
return transforms.Compose([
|
173 |
+
transforms.Resize((256, 256)), # Resize all images to the same size
|
174 |
+
transforms.ToTensor(), # Convert images to tensor
|
175 |
+
])
|
176 |
+
|
177 |
+
def get_val_test_transforms():
|
178 |
+
"""Define and return a series of transformations for the validation and test set."""
|
179 |
+
return transforms.Compose([
|
180 |
+
transforms.Resize((256, 256)), # resize to ensure consistency
|
181 |
+
transforms.ToTensor(), # Convert to tensor for model compatibility
|
182 |
+
])
|
183 |
+
|
184 |
+
def get_label_from_filename(image_path):
|
185 |
+
# Split the filename and extract the class part
|
186 |
+
filename = os.path.basename(image_path)
|
187 |
+
label = filename.split('_')[1].split('.')[0]
|
188 |
+
return label
|
189 |
+
|
190 |
+
def plot_class_distribution(base_path, start_class=1, end_class=9):
|
191 |
+
class_counts = {}
|
192 |
+
classes = sorted(os.listdir(base_path))[start_class-1:end_class]
|
193 |
+
|
194 |
+
for class_name in classes:
|
195 |
+
class_dir = os.path.join(base_path, class_name)
|
196 |
+
class_counts[class_name] = len(os.listdir(class_dir))
|
197 |
+
|
198 |
+
plt.figure(figsize=(10, 8))
|
199 |
+
plt.bar(class_counts.keys(), class_counts.values(), color='skyblue')
|
200 |
+
plt.xlabel('Classes')
|
201 |
+
plt.ylabel('Number of Images')
|
202 |
+
plt.title('Distribution of Classes ')
|
203 |
+
plt.xticks(rotation=45)
|
204 |
+
plt.show()
|
205 |
+
|
206 |
+
plot_class_distribution(SkinTone_Dataset_Path)
|
207 |
+
|
208 |
+
def display_sample_images(base_path, start_class=1, end_class=9):
|
209 |
+
classes = sorted(os.listdir(base_path)) # Sort and list all classes
|
210 |
+
selected_classes = classes[start_class-1:end_class] # Select classes from 1 to 9
|
211 |
+
num_classes = len(selected_classes)
|
212 |
+
fig, axes = plt.subplots(nrows=1, ncols=num_classes, figsize=(num_classes * 2, 4))
|
213 |
+
fig.suptitle('One Sample Image from Each Class', fontsize=16)
|
214 |
+
|
215 |
+
for i, class_name in enumerate(selected_classes):
|
216 |
+
class_dir = os.path.join(base_path, class_name)
|
217 |
+
sample_image = np.random.choice(os.listdir(class_dir), 1)[0] # Randomly pick one sample image
|
218 |
+
img_path = os.path.join(class_dir, sample_image)
|
219 |
+
img = Image.open(img_path).convert('RGB')
|
220 |
+
ax = axes[i]
|
221 |
+
ax.imshow(img)
|
222 |
+
ax.axis('off')
|
223 |
+
ax.set_title(class_name)
|
224 |
+
|
225 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
226 |
+
plt.show()
|
227 |
+
|
228 |
+
display_sample_images(SkinTone_Dataset_Path)
|
229 |
+
|
230 |
+
processed_images_dir = '/content/drive/MyDrive/Senior Project/Dataset/processed_images'
|
231 |
+
os.makedirs(processed_images_dir, exist_ok=True)
|
232 |
+
|
233 |
+
"""### Step 1: Set up the device and initialize face detection and parsing
|
234 |
+
|
235 |
+
```
|
236 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
237 |
+
face_detector = facer.face_detector('retinaface/mobilenet', device=device)
|
238 |
+
face_parser = facer.face_parser('farl/lapa/448', device=device)
|
239 |
+
```
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
### Step 2: Collect all image paths
|
244 |
+
|
245 |
+
```
|
246 |
+
all_images = collect_images(SkinTone_Dataset_Path)
|
247 |
+
```
|
248 |
+
|
249 |
+
|
250 |
+
### Step 3: Process images to detect and parse faces
|
251 |
+
|
252 |
+
```
|
253 |
+
processed_images = []
|
254 |
+
dataset_path = SkinTone_Dataset_Path
|
255 |
+
|
256 |
+
for image_path in all_images:
|
257 |
+
image_name = os.path.basename(image_path)
|
258 |
+
image_data = facer.read_hwc(image_path) # Check what type of data this function returns
|
259 |
+
|
260 |
+
if image_data is None:
|
261 |
+
print(f"Could not read image {image_name}")
|
262 |
+
continue
|
263 |
+
|
264 |
+
# Check if the data is a tensor and adjust dimensions for PyTorch if needed
|
265 |
+
if torch.is_tensor(image_data):
|
266 |
+
# Assuming image_data is already in CHW format but check your facer.read_hwc() function documentation
|
267 |
+
if image_data.shape[0] != 3: # Expecting C, H, W format, C should be 3 for RGB
|
268 |
+
image_tensor = image_data.permute(2, 0, 1) # Convert from HWC to CHW if necessary
|
269 |
+
else:
|
270 |
+
image_tensor = image_data
|
271 |
+
image_tensor = image_tensor.unsqueeze(0).to(device) # Add batch dimension and move to device
|
272 |
+
elif isinstance(image_data, np.ndarray):
|
273 |
+
# If it's a numpy array, convert to tensor
|
274 |
+
image_tensor = torch.from_numpy(image_data.astype('float32')).permute(2, 0, 1).unsqueeze(0).to(device)
|
275 |
+
else:
|
276 |
+
print(f"Unknown data type for image {image_name}: {type(image_data)}")
|
277 |
+
continue
|
278 |
+
|
279 |
+
with torch.inference_mode():
|
280 |
+
try:
|
281 |
+
faces = face_detector(image_tensor) # Pass the correctly shaped tensor to the face detector
|
282 |
+
|
283 |
+
if faces:
|
284 |
+
parsed_faces = face_parser(image_tensor, faces)
|
285 |
+
|
286 |
+
if 'seg' in parsed_faces:
|
287 |
+
seg_logits = parsed_faces['seg']['logits']
|
288 |
+
seg_probs = torch.sigmoid(seg_logits)
|
289 |
+
binary_mask = seg_probs[0, 1, :, :] > 0.5 # Accessing first image, second channel
|
290 |
+
binary_mask = binary_mask.cpu().numpy()
|
291 |
+
|
292 |
+
# Create a 3-channel binary mask for the RGB image
|
293 |
+
binary_mask_3d = np.repeat(binary_mask[:, :, np.newaxis], 3, axis=2)
|
294 |
+
|
295 |
+
# Apply the mask to the original image to extract the skin region
|
296 |
+
skin_region = image_data.cpu().numpy() * binary_mask_3d # Convert tensor to numpy if needed
|
297 |
+
|
298 |
+
# Convert the result to uint8 format for saving as an image
|
299 |
+
skin_region_uint8 = skin_region.astype(np.uint8)
|
300 |
+
|
301 |
+
# Save the processed skin region image to disk
|
302 |
+
processed_image_path = os.path.join(processed_images_dir, image_name)
|
303 |
+
Image.fromarray(skin_region_uint8).save(processed_image_path)
|
304 |
+
|
305 |
+
# Add the path of the saved image to processed_images
|
306 |
+
processed_images.append(processed_image_path)
|
307 |
+
except RuntimeError as e:
|
308 |
+
print(f"Error processing {image_name}: {str(e)}")
|
309 |
+
```
|
310 |
+
"""
|
311 |
+
|
312 |
+
def stratified_split_dataset(all_images, train_size=0.8, val_size=0.1, test_size=0.1):
|
313 |
+
"""Split the dataset into training, validation, and testing sets in a stratified manner."""
|
314 |
+
label_to_images = {}
|
315 |
+
for image in all_images:
|
316 |
+
label = get_label_from_filename(image)
|
317 |
+
if label in label_to_images:
|
318 |
+
label_to_images[label].append(image)
|
319 |
+
else:
|
320 |
+
label_to_images[label] = [image]
|
321 |
+
|
322 |
+
train_images = []
|
323 |
+
val_images = []
|
324 |
+
test_images = []
|
325 |
+
train_labels = []
|
326 |
+
val_labels = []
|
327 |
+
test_labels = []
|
328 |
+
|
329 |
+
for label, images in label_to_images.items():
|
330 |
+
np.random.shuffle(images)
|
331 |
+
total_images = len(images)
|
332 |
+
train_end = int(train_size * total_images)
|
333 |
+
val_end = train_end + int(val_size * total_images)
|
334 |
+
|
335 |
+
train_images.extend(images[:train_end])
|
336 |
+
val_images.extend(images[train_end:val_end])
|
337 |
+
test_images.extend(images[val_end:])
|
338 |
+
|
339 |
+
# Append corresponding labels
|
340 |
+
train_labels.extend([label] * len(images[:train_end]))
|
341 |
+
val_labels.extend([label] * len(images[train_end:val_end]))
|
342 |
+
test_labels.extend([label] * len(images[val_end:]))
|
343 |
+
|
344 |
+
return (train_images, train_labels), (val_images, val_labels), (test_images, test_labels)
|
345 |
+
|
346 |
+
# Step 4: Split the processed images
|
347 |
+
processed_images = collect_images(processed_images_dir)
|
348 |
+
(train_images, train_labels), (val_images, val_labels), (test_images, test_labels) = stratified_split_dataset(processed_images)
|
349 |
+
|
350 |
+
|
351 |
+
# Step 5: Define transformations for datasets
|
352 |
+
train_transforms = get_train_transforms()
|
353 |
+
val_test_transforms = get_val_test_transforms()
|
354 |
+
|
355 |
+
# Step 6: Create datasets with the face detector and parser
|
356 |
+
train_dataset = SkinToneDataset(train_images, train_labels, transform=train_transforms)
|
357 |
+
val_dataset = SkinToneDataset(val_images, val_labels, transform=val_test_transforms)
|
358 |
+
test_dataset = SkinToneDataset(test_images, test_labels, transform=val_test_transforms)
|
359 |
+
|
360 |
+
# Step 7: Create DataLoaders
|
361 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
362 |
+
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
|
363 |
+
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
|
364 |
+
|
365 |
+
print(f"Total processed images: {len(processed_images)}")
|
366 |
+
print(f"Training images: {len(train_images)}")
|
367 |
+
print(f"Validation images: {len(val_images)}")
|
368 |
+
print(f"Testing images: {len(test_images)}")
|
369 |
+
|
370 |
+
def count_labels(image_paths):
|
371 |
+
"""Count occurrences of each label in a list of image paths."""
|
372 |
+
label_count = {}
|
373 |
+
for path in image_paths:
|
374 |
+
label = get_label_from_filename(path)
|
375 |
+
if label in label_count:
|
376 |
+
label_count[label] += 1
|
377 |
+
else:
|
378 |
+
label_count[label] = 1
|
379 |
+
return label_count
|
380 |
+
|
381 |
+
train_counts = count_labels(train_images)
|
382 |
+
val_counts = count_labels(val_images)
|
383 |
+
test_counts = count_labels(test_images)
|
384 |
+
|
385 |
+
print("Training set counts:")
|
386 |
+
for label, count in train_counts.items():
|
387 |
+
print(f"Label: {label}, Count: {count}")
|
388 |
+
|
389 |
+
print("\nValidation set counts:")
|
390 |
+
for label, count in val_counts.items():
|
391 |
+
print(f"Label: {label}, Count: {count}")
|
392 |
+
|
393 |
+
print("\nTest set counts:")
|
394 |
+
for label, count in test_counts.items():
|
395 |
+
print(f"Label: {label}, Count: {count}")
|
396 |
+
|
397 |
+
def plot_images_from_loader(loader, num_images):
|
398 |
+
dataiter = iter(loader)
|
399 |
+
images, labels = next(dataiter)
|
400 |
+
|
401 |
+
figure_width = num_images * 2
|
402 |
+
figure_height = 3
|
403 |
+
fig = plt.figure(figsize=(figure_width, figure_height))
|
404 |
+
|
405 |
+
for i in range(num_images):
|
406 |
+
if i >= images.size(0):
|
407 |
+
break
|
408 |
+
|
409 |
+
left = i / num_images
|
410 |
+
bottom = 0.1
|
411 |
+
width = 1 / num_images
|
412 |
+
height = 0.8
|
413 |
+
ax = fig.add_axes([left, bottom, width, height])
|
414 |
+
|
415 |
+
img = to_pil_image(images[i])
|
416 |
+
ax.imshow(img)
|
417 |
+
ax.set_title(f'Image {i}, Label: {labels[i]}')
|
418 |
+
ax.axis('off')
|
419 |
+
|
420 |
+
plt.show()
|
421 |
+
|
422 |
+
plot_images_from_loader(train_loader, num_images=10)
|
423 |
+
|
424 |
+
"""####Here is after reducing the number of classes from 9 to 4"""
|
425 |
+
|
426 |
+
def reorganize_dataset(source_dir, target_dir, class_mapping):
|
427 |
+
if not os.path.exists(target_dir):
|
428 |
+
os.makedirs(target_dir)
|
429 |
+
|
430 |
+
# a dictionary to hold the image paths for each new class
|
431 |
+
new_class_images = defaultdict(list)
|
432 |
+
|
433 |
+
# Iterate over all files in the source directory
|
434 |
+
for filename in os.listdir(source_dir):
|
435 |
+
if filename.endswith(('.png', '.jpg', '.jpeg')):
|
436 |
+
# Extract class from filename, stripping non-numeric characters
|
437 |
+
class_label = ''.join(filter(str.isdigit, filename.split('_')[1]))
|
438 |
+
# Determine new class based on mapping
|
439 |
+
for new_class, old_classes in class_mapping.items():
|
440 |
+
if int(class_label) in old_classes:
|
441 |
+
new_class_images[new_class].append(os.path.join(source_dir, filename))
|
442 |
+
break
|
443 |
+
|
444 |
+
# For each new class, copy images until we reach the desired number
|
445 |
+
for new_class, images in new_class_images.items():
|
446 |
+
class_dir = os.path.join(target_dir, str(new_class))
|
447 |
+
if not os.path.exists(class_dir):
|
448 |
+
os.makedirs(class_dir)
|
449 |
+
|
450 |
+
# Randomize the image list and copy the first 1000
|
451 |
+
random.shuffle(images)
|
452 |
+
for i in range(min(1000, len(images))):
|
453 |
+
shutil.copy2(images[i], class_dir)
|
454 |
+
|
455 |
+
# Mapping of original classes to new classes
|
456 |
+
class_mapping = {
|
457 |
+
'1': [2, 3, 4],
|
458 |
+
'2': [5, 6],
|
459 |
+
'3': [7, 8],
|
460 |
+
'4': [9, 10],
|
461 |
+
}
|
462 |
+
|
463 |
+
source_dataset_folder = processed_images_dir
|
464 |
+
target_dataset_folder = '/content/drive/MyDrive/Senior Project/Dataset/reorganized_dataset'
|
465 |
+
os.makedirs(target_dataset_folder, exist_ok=True)
|
466 |
+
|
467 |
+
#reorganize_dataset(source_dataset_folder, target_dataset_folder, class_mapping)
|
468 |
+
|
469 |
+
def rename_images_in_folders(target_dataset_folder):
|
470 |
+
|
471 |
+
for class_folder in os.listdir(target_dataset_folder):
|
472 |
+
class_folder_path = os.path.join(target_dataset_folder, class_folder)
|
473 |
+
if os.path.isdir(class_folder_path):
|
474 |
+
# New class is determined by the folder name
|
475 |
+
new_class_label = class_folder
|
476 |
+
|
477 |
+
# Rename each image in the class folder
|
478 |
+
for filename in os.listdir(class_folder_path):
|
479 |
+
if filename.endswith(('.png', '.jpg', '.jpeg')):
|
480 |
+
|
481 |
+
parts = filename.split('_')
|
482 |
+
# Check if there are sufficient parts to rename
|
483 |
+
if len(parts) == 2:
|
484 |
+
prefix = parts[0]
|
485 |
+
suffix = parts[1]
|
486 |
+
# Split the second part to isolate the extension
|
487 |
+
class_and_extension = suffix.split('.')
|
488 |
+
if len(class_and_extension) == 2:
|
489 |
+
extension = class_and_extension[1]
|
490 |
+
# Construct new filename using new class label and extension
|
491 |
+
new_filename = f"{prefix}_{new_class_label}.{extension}"
|
492 |
+
old_path = os.path.join(class_folder_path, filename)
|
493 |
+
new_path = os.path.join(class_folder_path, new_filename)
|
494 |
+
print(f"Renaming {old_path} to {new_path}") # Debugging output
|
495 |
+
os.rename(old_path, new_path)
|
496 |
+
else:
|
497 |
+
print(f"Error parsing extension from {filename}")
|
498 |
+
else:
|
499 |
+
print(f"Unexpected filename structure: {filename}")
|
500 |
+
else:
|
501 |
+
print(f"Skipping file due to incorrect format: {filename}")
|
502 |
+
|
503 |
+
|
504 |
+
#rename_images_in_folders(target_dataset_folder)
|
505 |
+
|
506 |
+
def stratified_split_dataset_after_red_classes(root_dir, train_size=0.8, val_size=0.1, test_size=0.1):
|
507 |
+
"""
|
508 |
+
Split the dataset into training, validation, and testing sets in a stratified manner
|
509 |
+
after the classes have been reduced and organized into folders.
|
510 |
+
"""
|
511 |
+
label_to_images = {}
|
512 |
+
train_images, val_images, test_images = [], [], []
|
513 |
+
train_labels, val_labels, test_labels = [], [], []
|
514 |
+
|
515 |
+
# Collect all image paths and their labels
|
516 |
+
for label in os.listdir(root_dir):
|
517 |
+
label_path = os.path.join(root_dir, label)
|
518 |
+
if os.path.isdir(label_path): # to make sure it's a directory
|
519 |
+
images = [os.path.join(label_path, img) for img in os.listdir(label_path)
|
520 |
+
if img.endswith(('.png', '.jpg', '.jpeg'))]
|
521 |
+
label_to_images[label] = images
|
522 |
+
|
523 |
+
# Split the images for each label
|
524 |
+
for label, images in label_to_images.items():
|
525 |
+
|
526 |
+
X_train, X_val_test = train_test_split(images, train_size=train_size, stratify=None, random_state=42)
|
527 |
+
X_val, X_test = train_test_split(X_val_test, train_size=val_size / (val_size + test_size), stratify=None, random_state=42)
|
528 |
+
|
529 |
+
train_images.extend(X_train)
|
530 |
+
val_images.extend(X_val)
|
531 |
+
test_images.extend(X_test)
|
532 |
+
|
533 |
+
# Append corresponding labels
|
534 |
+
train_labels.extend([label] * len(X_train))
|
535 |
+
val_labels.extend([label] * len(X_val))
|
536 |
+
test_labels.extend([label] * len(X_test))
|
537 |
+
|
538 |
+
return (train_images, train_labels), (val_images, val_labels), (test_images, test_labels)
|
539 |
+
|
540 |
+
# Split the processed images
|
541 |
+
target_dataset_folder = '/content/drive/MyDrive/Senior Project/Dataset/reorganized_dataset'
|
542 |
+
dir_AfterRedClasses = target_dataset_folder
|
543 |
+
(train_images2, train_labels2), (val_images2, val_labels2), (test_images2, test_labels2) = stratified_split_dataset_after_red_classes(dir_AfterRedClasses)
|
544 |
+
|
545 |
+
|
546 |
+
# Define transformations for datasets
|
547 |
+
train_transforms = get_train_transforms()
|
548 |
+
val_test_transforms = get_val_test_transforms()
|
549 |
+
|
550 |
+
# Create datasets with the face detector and parser
|
551 |
+
|
552 |
+
train_dataset2 = SkinToneDataset(train_images2, train_labels2, transform=train_transforms)
|
553 |
+
val_dataset2 = SkinToneDataset(val_images2, val_labels2, transform=val_test_transforms)
|
554 |
+
test_dataset2 = SkinToneDataset(test_images2, test_labels2, transform=val_test_transforms)
|
555 |
+
|
556 |
+
# Create DataLoaders
|
557 |
+
train_loader2 = DataLoader(train_dataset2, batch_size=32, shuffle=True)
|
558 |
+
val_loader2 = DataLoader(val_dataset2, batch_size=32, shuffle=False)
|
559 |
+
test_loader2 = DataLoader(test_dataset2, batch_size=32, shuffle=False)
|
560 |
+
|
561 |
+
print(f"Total processed images: {len(train_images2)+len(val_images2)+len(test_images2)}")
|
562 |
+
print(f"Training images: {len(train_images2)}")
|
563 |
+
print(f"Validation images: {len(val_images2)}")
|
564 |
+
print(f"Testing images: {len(test_images2)}")
|
565 |
+
|
566 |
+
def count_labels2(image_paths):
|
567 |
+
"""Count occurrences of each label in a list of image paths."""
|
568 |
+
label_count = defaultdict(int)
|
569 |
+
for path in image_paths:
|
570 |
+
# Extract the class label from the filename
|
571 |
+
filename = os.path.basename(path)
|
572 |
+
label = filename.split('_')[1]
|
573 |
+
label_count[label] += 1
|
574 |
+
return label_count
|
575 |
+
|
576 |
+
train_counts2 = count_labels2(train_images2)
|
577 |
+
val_counts = count_labels2(val_images2)
|
578 |
+
test_counts = count_labels2(test_images2)
|
579 |
+
|
580 |
+
print("Training set counts:")
|
581 |
+
for label, count in train_counts2.items():
|
582 |
+
print(f"Label: {label}, Count: {count}")
|
583 |
+
|
584 |
+
print("\nValidation set counts:")
|
585 |
+
for label, count in val_counts.items():
|
586 |
+
print(f"Label: {label}, Count: {count}")
|
587 |
+
|
588 |
+
print("\nTest set counts:")
|
589 |
+
for label, count in test_counts.items():
|
590 |
+
print(f"Label: {label}, Count: {count}")
|
591 |
+
|
592 |
+
plot_images_from_loader(train_loader2, num_images=10)
|
593 |
+
|
594 |
+
def load_images_and_labels(image_paths, labels, target_size):
|
595 |
+
images = []
|
596 |
+
label_indices = []
|
597 |
+
unique_labels = sorted(set(labels))
|
598 |
+
num_classes = len(unique_labels)
|
599 |
+
label_to_index = {label: idx for idx, label in enumerate(unique_labels)}
|
600 |
+
|
601 |
+
for image_path, label in zip(image_paths, labels):
|
602 |
+
img = Image.open(image_path).convert('RGB')
|
603 |
+
img = img.resize(target_size)
|
604 |
+
images.append(np.array(img))
|
605 |
+
label_indices.append(label_to_index[label]) # store the label index in a separate list
|
606 |
+
|
607 |
+
images = np.array(images, dtype='float32') / 255.0
|
608 |
+
label_indices = np.array(label_indices, dtype='int32')
|
609 |
+
labels = to_categorical(label_indices, num_classes=num_classes)
|
610 |
+
return images, labels
|
611 |
+
|
612 |
+
"""# 4. Model Training and Evaluation
|
613 |
+
|
614 |
+
## 4.1 Define model architecture, train on datasets.
|
615 |
+
|
616 |
+
### 4.1.1 First model (CNN: ResNet architecture "Transfer Learning")
|
617 |
+
"""
|
618 |
+
|
619 |
+
(train_images2, train_labels2), (val_images2, val_labels2), (test_images2, test_labels2) = stratified_split_dataset_after_red_classes(dir_AfterRedClasses)
|
620 |
+
X_train, Y_train = load_images_and_labels(train_images2, train_labels2, target_size=(128, 128))
|
621 |
+
X_val, Y_val = load_images_and_labels(val_images2, val_labels2, target_size=(128, 128))
|
622 |
+
|
623 |
+
"""####ResNet50
|
624 |
+
|
625 |
+
#####hyperparameter tuning
|
626 |
+
"""
|
627 |
+
|
628 |
+
def build_model(hp):
|
629 |
+
base_model = ResNet50(include_top=False, input_shape=(128, 128, 3))
|
630 |
+
x = GlobalAveragePooling2D()(base_model.output)
|
631 |
+
# Apply L2 regularization to the new Dense layer
|
632 |
+
x = Dense(hp.Int('units', min_value=32, max_value=512, step=32), activation='relu', kernel_regularizer=l2(0.01))(x)
|
633 |
+
predictions = Dense(4, activation='softmax', kernel_regularizer=l2(0.01))(x)
|
634 |
+
model = Model(inputs=base_model.input, outputs=predictions)
|
635 |
+
model.compile(optimizer=tf.keras.optimizers.Adam(hp.Float('learning_rate', min_value=1e-5, max_value=1e-2, sampling='LOG')),
|
636 |
+
loss='categorical_crossentropy',
|
637 |
+
metrics=['accuracy', Precision(), Recall(), tfa.metrics.F1Score(num_classes=4, average='macro')])
|
638 |
+
return model
|
639 |
+
|
640 |
+
lr_scheduler = ReduceLROnPlateau(
|
641 |
+
monitor='val_loss',
|
642 |
+
factor=0.5,
|
643 |
+
patience=3
|
644 |
+
)
|
645 |
+
|
646 |
+
tuner = RandomSearch(
|
647 |
+
build_model,
|
648 |
+
objective='val_accuracy',
|
649 |
+
max_trials=20,
|
650 |
+
executions_per_trial=1,
|
651 |
+
directory='my_dir',
|
652 |
+
project_name='hyperparam_tuning'
|
653 |
+
)
|
654 |
+
|
655 |
+
tuner.search(
|
656 |
+
x=X_train,
|
657 |
+
y=Y_train,
|
658 |
+
epochs=10,
|
659 |
+
validation_data=(X_val, Y_val),
|
660 |
+
callbacks=[EarlyStopping(monitor='val_accuracy', patience=2), lr_scheduler]
|
661 |
+
)
|
662 |
+
best_model = tuner.get_best_models(num_models=1)[0]
|
663 |
+
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
|
664 |
+
|
665 |
+
print("Best model summary:")
|
666 |
+
best_model.summary()
|
667 |
+
print("Best hyperparameters:", best_hyperparameters.values)
|
668 |
+
|
669 |
+
"""#####Train with best hyperparameters"""
|
670 |
+
|
671 |
+
def rebuild_best_model(best_hyperparameters):
|
672 |
+
hp = HyperParameters()
|
673 |
+
hp.Int('units', min_value=32, max_value=512, step=32, default=best_hyperparameters['units'])
|
674 |
+
model = build_model(hp)
|
675 |
+
return model
|
676 |
+
# Rebuild the best model
|
677 |
+
best_hyperparameters= {'units': 480, 'learning_rate': 1.4547542034522853e-05}
|
678 |
+
best_model = rebuild_best_model(best_hyperparameters)
|
679 |
+
|
680 |
+
# Configure the callbacks
|
681 |
+
early_stopper = EarlyStopping(monitor='val_accuracy', patience=10, restore_best_weights=True)
|
682 |
+
lr_scheduler = ReduceLROnPlateau(
|
683 |
+
monitor='val_loss',
|
684 |
+
factor=0.1,
|
685 |
+
patience=5,
|
686 |
+
verbose=1
|
687 |
+
)
|
688 |
+
|
689 |
+
# Fit the model with a larger number of epochs
|
690 |
+
history = best_model.fit(
|
691 |
+
x=X_train,
|
692 |
+
y=Y_train,
|
693 |
+
epochs=50,
|
694 |
+
validation_data=(X_val, Y_val),
|
695 |
+
callbacks=[early_stopper, lr_scheduler]
|
696 |
+
)
|
697 |
+
|
698 |
+
print(history.history.keys())
|
699 |
+
|
700 |
+
# Retrieve metrics data using the correct keys
|
701 |
+
accuracy = history.history.get('accuracy', [])
|
702 |
+
val_accuracy = history.history.get('val_accuracy', [])
|
703 |
+
precision = history.history.get('precision_6', []) # Updated to match the key
|
704 |
+
val_precision = history.history.get('val_precision_6', [])
|
705 |
+
recall = history.history.get('recall_6', []) # Updated to match the key
|
706 |
+
val_recall = history.history.get('val_recall_6', [])
|
707 |
+
f1_score = history.history.get('f1_score', [])
|
708 |
+
val_f1_score = history.history.get('val_f1_score', [])
|
709 |
+
|
710 |
+
# Determine the range of epochs
|
711 |
+
epochs_range = range(1, len(accuracy) + 1)
|
712 |
+
|
713 |
+
plt.figure(figsize=(14, 10))
|
714 |
+
plt.suptitle('Training and Validation Metrics')
|
715 |
+
|
716 |
+
# Plot accuracy
|
717 |
+
if accuracy and val_accuracy:
|
718 |
+
plt.subplot(2, 2, 1)
|
719 |
+
plt.plot(epochs_range, accuracy, label='Training Accuracy')
|
720 |
+
plt.plot(epochs_range, val_accuracy, label='Validation Accuracy')
|
721 |
+
plt.title('Accuracy')
|
722 |
+
plt.xlabel('Epochs')
|
723 |
+
plt.ylabel('Accuracy')
|
724 |
+
plt.legend()
|
725 |
+
|
726 |
+
# Plot precision
|
727 |
+
if precision and val_precision:
|
728 |
+
plt.subplot(2, 2, 2)
|
729 |
+
plt.plot(epochs_range, precision, label='Training Precision')
|
730 |
+
plt.plot(epochs_range, val_precision, label='Validation Precision')
|
731 |
+
plt.title('Precision')
|
732 |
+
plt.xlabel('Epochs')
|
733 |
+
plt.ylabel('Precision')
|
734 |
+
plt.legend()
|
735 |
+
|
736 |
+
# Plot recall
|
737 |
+
if recall and val_recall:
|
738 |
+
plt.subplot(2, 2, 3)
|
739 |
+
plt.plot(epochs_range, recall, label='Training Recall')
|
740 |
+
plt.plot(epochs_range, val_recall, label='Validation Recall')
|
741 |
+
plt.title('Recall')
|
742 |
+
plt.xlabel('Epochs')
|
743 |
+
plt.ylabel('Recall')
|
744 |
+
plt.legend()
|
745 |
+
|
746 |
+
# Plot F1-score
|
747 |
+
if f1_score and val_f1_score:
|
748 |
+
plt.subplot(2, 2, 4)
|
749 |
+
plt.plot(epochs_range, f1_score, label='Training F1 Score')
|
750 |
+
plt.plot(epochs_range, val_f1_score, label='Validation F1 Score')
|
751 |
+
plt.title('F1 Score')
|
752 |
+
plt.xlabel('Epochs')
|
753 |
+
plt.ylabel('F1 Score')
|
754 |
+
plt.legend()
|
755 |
+
|
756 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
757 |
+
plt.show()
|
758 |
+
|
759 |
+
"""#####Evaluate the model"""
|
760 |
+
|
761 |
+
X_test, Y_test = load_images_and_labels(test_images2, test_labels2, target_size=(128, 128))
|
762 |
+
scores = best_model.evaluate(X_test, Y_test, verbose=1)
|
763 |
+
print(f"Test Loss: {scores[0]}")
|
764 |
+
print(f"Test Accuracy: {scores[1]}")
|
765 |
+
print(f"Test Precision: {scores[2]}")
|
766 |
+
print(f"Test Recall: {scores[3]}")
|
767 |
+
print(f"Test F1 Score (Macro): {scores[4]}")
|
768 |
+
if len(scores) > 5:
|
769 |
+
print(f"Test F1 Score (Micro): {scores[5]}")
|
770 |
+
if len(scores) > 6:
|
771 |
+
print(f"Test F1 Score (Weighted): {scores[6]}")
|
772 |
+
|
773 |
+
predictions = best_model.predict(X_test)
|
774 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
775 |
+
true_classes = np.argmax(Y_test, axis=1)
|
776 |
+
|
777 |
+
# Compute the confusion matrix
|
778 |
+
cm = confusion_matrix(true_classes, predicted_classes)
|
779 |
+
class_names=['1','2','3','4']
|
780 |
+
|
781 |
+
# Plot the confusion matrix
|
782 |
+
plt.figure(figsize=(10, 8))
|
783 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap='Blues', xticklabels=class_names, yticklabels=class_names)
|
784 |
+
plt.title('Confusion Matrix')
|
785 |
+
plt.ylabel('Actual Class')
|
786 |
+
plt.xlabel('Predicted Class')
|
787 |
+
plt.show()
|
788 |
+
|
789 |
+
"""#####Save the model"""
|
790 |
+
|
791 |
+
model_path = "/content/drive/My Drive/modelResNet50.h5"
|
792 |
+
best_model.save(model_path)
|
793 |
+
|
794 |
+
"""####ResNet18
|
795 |
+
|
796 |
+
#####Train with best hyperparameters
|
797 |
+
"""
|
798 |
+
|
799 |
+
ResNet18, preprocess_input = Classifiers.get('resnet18')
|
800 |
+
|
801 |
+
model = ResNet18(input_shape=(128, 128, 3), weights='imagenet', include_top=False)
|
802 |
+
|
803 |
+
|
804 |
+
x = GlobalAveragePooling2D()(model.output)
|
805 |
+
x = Dense(480, activation='relu', kernel_regularizer=l2(0.01))(x) # Apply L2 regularization here
|
806 |
+
predictions = Dense(4, activation='softmax', kernel_regularizer=l2(0.01))(x) # Also apply to the output layer
|
807 |
+
|
808 |
+
custom_model = Model(inputs=model.input, outputs=predictions)
|
809 |
+
|
810 |
+
custom_model.compile(
|
811 |
+
optimizer=Adam(learning_rate=1.4547542034522853e-05),
|
812 |
+
loss='categorical_crossentropy',
|
813 |
+
metrics=['accuracy',Precision(), Recall(), tf.metrics.F1Score(average='macro')])
|
814 |
+
|
815 |
+
custom_model.summary()
|
816 |
+
|
817 |
+
early_stopping = EarlyStopping(
|
818 |
+
monitor='val_loss',
|
819 |
+
min_delta=0.001,
|
820 |
+
patience=10,
|
821 |
+
verbose=1,
|
822 |
+
restore_best_weights=True )
|
823 |
+
|
824 |
+
tf.config.run_functions_eagerly(True)
|
825 |
+
history = custom_model.fit(
|
826 |
+
X_train, Y_train,
|
827 |
+
validation_data=(X_val, Y_val),
|
828 |
+
epochs=50, # Maximum number of epochs
|
829 |
+
batch_size=32,
|
830 |
+
callbacks=[early_stopping]
|
831 |
+
)
|
832 |
+
tf.config.run_functions_eagerly(False)
|
833 |
+
|
834 |
+
print(history.history.keys())
|
835 |
+
|
836 |
+
# Retrieve metrics data using the correct keys
|
837 |
+
accuracy = history.history.get('accuracy', [])
|
838 |
+
val_accuracy = history.history.get('val_accuracy', [])
|
839 |
+
precision = history.history.get('precision_7', []) # Updated to match the key
|
840 |
+
val_precision = history.history.get('val_precision_7', [])
|
841 |
+
recall = history.history.get('recall_7', []) # Updated to match the key
|
842 |
+
val_recall = history.history.get('val_recall_7', [])
|
843 |
+
f1_score = history.history.get('f1_score', [])
|
844 |
+
val_f1_score = history.history.get('val_f1_score', [])
|
845 |
+
|
846 |
+
# Determine the range of epochs
|
847 |
+
epochs_range = range(1, len(accuracy) + 1)
|
848 |
+
|
849 |
+
plt.figure(figsize=(14, 10))
|
850 |
+
plt.suptitle('Training and Validation Metrics')
|
851 |
+
|
852 |
+
# Plot accuracy
|
853 |
+
if accuracy and val_accuracy:
|
854 |
+
plt.subplot(2, 2, 1)
|
855 |
+
plt.plot(epochs_range, accuracy, label='Training Accuracy')
|
856 |
+
plt.plot(epochs_range, val_accuracy, label='Validation Accuracy')
|
857 |
+
plt.title('Accuracy')
|
858 |
+
plt.xlabel('Epochs')
|
859 |
+
plt.ylabel('Accuracy')
|
860 |
+
plt.legend()
|
861 |
+
|
862 |
+
# Plot precision
|
863 |
+
if precision and val_precision:
|
864 |
+
plt.subplot(2, 2, 2)
|
865 |
+
plt.plot(epochs_range, precision, label='Training Precision')
|
866 |
+
plt.plot(epochs_range, val_precision, label='Validation Precision')
|
867 |
+
plt.title('Precision')
|
868 |
+
plt.xlabel('Epochs')
|
869 |
+
plt.ylabel('Precision')
|
870 |
+
plt.legend()
|
871 |
+
|
872 |
+
# Plot recall
|
873 |
+
if recall and val_recall:
|
874 |
+
plt.subplot(2, 2, 3)
|
875 |
+
plt.plot(epochs_range, recall, label='Training Recall')
|
876 |
+
plt.plot(epochs_range, val_recall, label='Validation Recall')
|
877 |
+
plt.title('Recall')
|
878 |
+
plt.xlabel('Epochs')
|
879 |
+
plt.ylabel('Recall')
|
880 |
+
plt.legend()
|
881 |
+
|
882 |
+
# Plot F1-score
|
883 |
+
if f1_score and val_f1_score:
|
884 |
+
plt.subplot(2, 2, 4)
|
885 |
+
plt.plot(epochs_range, f1_score, label='Training F1 Score')
|
886 |
+
plt.plot(epochs_range, val_f1_score, label='Validation F1 Score')
|
887 |
+
plt.title('F1 Score')
|
888 |
+
plt.xlabel('Epochs')
|
889 |
+
plt.ylabel('F1 Score')
|
890 |
+
plt.legend()
|
891 |
+
|
892 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
893 |
+
plt.show()
|
894 |
+
|
895 |
+
"""#####Evaluate the model"""
|
896 |
+
|
897 |
+
X_test, Y_test = load_images_and_labels(test_images2, test_labels2, target_size=(128, 128))
|
898 |
+
# Evaluate the model
|
899 |
+
performance = custom_model.evaluate(X_test, Y_test)
|
900 |
+
print(f"Test Loss: {performance[0]}")
|
901 |
+
print(f"Test Accuracy: {performance[1]}")
|
902 |
+
print(f"Test Precision: {performance[2]}")
|
903 |
+
print(f"Test Recall: {performance[3]}")
|
904 |
+
print(f"Test F1 Score: {performance[4]}")
|
905 |
+
|
906 |
+
predictions = custom_model.predict(X_test)
|
907 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
908 |
+
true_classes = np.argmax(Y_test, axis=1)
|
909 |
+
|
910 |
+
# Compute the confusion matrix
|
911 |
+
cm = confusion_matrix(true_classes, predicted_classes)
|
912 |
+
class_names=['1','2','3','4']
|
913 |
+
|
914 |
+
# Plot the confusion matrix
|
915 |
+
plt.figure(figsize=(10, 8))
|
916 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap='Blues', xticklabels=class_names, yticklabels=class_names)
|
917 |
+
plt.title('Confusion Matrix')
|
918 |
+
plt.ylabel('Actual Class')
|
919 |
+
plt.xlabel('Predicted Class')
|
920 |
+
plt.show()
|
921 |
+
|
922 |
+
"""#####Save the model"""
|
923 |
+
|
924 |
+
model_path = "/content/drive/My Drive/modelResNet18.h5"
|
925 |
+
best_model.save(model_path)
|
926 |
+
|
927 |
+
"""### 4.1.2 Second model (CNN: Simple architecture using Keras)
|
928 |
+
|
929 |
+
####hyperparameter tuning
|
930 |
+
"""
|
931 |
+
|
932 |
+
class ColorFocusLayer(Layer):
|
933 |
+
def __init__(self, **kwargs):
|
934 |
+
super(ColorFocusLayer, self).__init__(**kwargs)
|
935 |
+
self.conv = None # Conv layer will be set in build
|
936 |
+
|
937 |
+
def build(self, input_shape):
|
938 |
+
# Set the number of groups to a divisor of the number of input channels
|
939 |
+
input_channels = input_shape[-1]
|
940 |
+
possible_groups = [i for i in range(1, input_channels + 1) if input_channels % i == 0]
|
941 |
+
chosen_group = max(possible_groups) # Choose the largest divisor for better learning
|
942 |
+
self.conv = Conv2D(input_channels, kernel_size=1, groups=chosen_group, padding='same')
|
943 |
+
super(ColorFocusLayer, self).build(input_shape)
|
944 |
+
|
945 |
+
def call(self, inputs):
|
946 |
+
x = self.conv(inputs)
|
947 |
+
x = tf.keras.activations.sigmoid(x)
|
948 |
+
return inputs * x
|
949 |
+
|
950 |
+
|
951 |
+
def build_model(hp):
|
952 |
+
filters_1 = hp.Int('conv_1_filters', min_value=32, max_value=128, step=32, default=64)
|
953 |
+
model = Sequential([
|
954 |
+
Conv2D(
|
955 |
+
hp.Int('conv_1_filters', min_value=32, max_value=128, step=32, default=64),
|
956 |
+
kernel_size=hp.Choice('conv_1_kernel', values=[3, 5, 7], default=5),
|
957 |
+
padding='same',
|
958 |
+
activation='relu',
|
959 |
+
input_shape=(128, 128, 3)),
|
960 |
+
BatchNormalization(),
|
961 |
+
ColorFocusLayer(),
|
962 |
+
Conv2D(
|
963 |
+
hp.Int('conv_2_filters', min_value=64, max_value=256, step=32, default=96),
|
964 |
+
kernel_size=hp.Choice('conv_2_kernel', values=[3, 5], default=3),
|
965 |
+
padding='same',
|
966 |
+
activation='relu'),
|
967 |
+
BatchNormalization(),
|
968 |
+
MaxPooling2D(pool_size=2),
|
969 |
+
Conv2D(
|
970 |
+
hp.Int('conv_3_filters', min_value=128, max_value=256, step=32),
|
971 |
+
kernel_size=hp.Choice('conv_3_kernel', values=[3, 5]),
|
972 |
+
padding='same',
|
973 |
+
activation='relu'),
|
974 |
+
BatchNormalization(),
|
975 |
+
GlobalAveragePooling2D(),
|
976 |
+
Dense(
|
977 |
+
hp.Int('dense_units', min_value=64, max_value=256, step=64),
|
978 |
+
activation='relu'),
|
979 |
+
Dropout(hp.Float('dropout', min_value=0.0, max_value=0.5, step=0.1)),
|
980 |
+
Dense(4, activation='softmax')
|
981 |
+
])
|
982 |
+
|
983 |
+
model.compile(
|
984 |
+
optimizer=Adam(hp.Float('learning_rate', min_value=1e-4, max_value=1e-2, sampling='LOG')),
|
985 |
+
loss='categorical_crossentropy',
|
986 |
+
metrics=['accuracy', Precision(), Recall(), tfa.metrics.F1Score(num_classes=4, average='macro')]
|
987 |
+
)
|
988 |
+
|
989 |
+
return model
|
990 |
+
|
991 |
+
lr_scheduler = ReduceLROnPlateau(
|
992 |
+
monitor='val_loss',
|
993 |
+
factor=0.1,
|
994 |
+
patience=5
|
995 |
+
)
|
996 |
+
|
997 |
+
tuner = Hyperband(
|
998 |
+
build_model,
|
999 |
+
objective=Objective("val_accuracy", direction="max"),
|
1000 |
+
max_epochs=10,
|
1001 |
+
hyperband_iterations=2,
|
1002 |
+
directory='my_dir',
|
1003 |
+
project_name='hyperparam_tuning'
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
tuner.search(
|
1007 |
+
x=X_train,
|
1008 |
+
y=Y_train,
|
1009 |
+
epochs=10,
|
1010 |
+
validation_data=(X_val, Y_val),
|
1011 |
+
callbacks=[EarlyStopping(monitor='val_accuracy', patience=3), lr_scheduler]
|
1012 |
+
)
|
1013 |
+
best_model = tuner.get_best_models(num_models=1)[0]
|
1014 |
+
best_hyperparameters = tuner.get_best_hyperparameters(num_trials=1)[0]
|
1015 |
+
|
1016 |
+
print("Best model summary:")
|
1017 |
+
best_model.summary()
|
1018 |
+
print("Best hyperparameters:", best_hyperparameters.values)
|
1019 |
+
|
1020 |
+
"""####Train with best hyperparameters"""
|
1021 |
+
|
1022 |
+
def rebuild_best_model(best_hyperparameters):
|
1023 |
+
hp = best_hyperparameters
|
1024 |
+
model = build_model(hp)
|
1025 |
+
return model
|
1026 |
+
|
1027 |
+
# Rebuild the best model
|
1028 |
+
best_model = rebuild_best_model(tuner.get_best_hyperparameters()[0])
|
1029 |
+
|
1030 |
+
# Configure the callbacks
|
1031 |
+
early_stopper = EarlyStopping(monitor='val_accuracy', patience=10, restore_best_weights=True)
|
1032 |
+
lr_scheduler = ReduceLROnPlateau(
|
1033 |
+
monitor='val_loss',
|
1034 |
+
factor=0.1,
|
1035 |
+
patience=5,
|
1036 |
+
verbose=1
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
# Fit the model with a larger number of epochs
|
1040 |
+
history = best_model.fit(
|
1041 |
+
x=X_train,
|
1042 |
+
y=Y_train,
|
1043 |
+
epochs=50,
|
1044 |
+
validation_data=(X_val, Y_val),
|
1045 |
+
callbacks=[early_stopper, lr_scheduler]
|
1046 |
+
)
|
1047 |
+
|
1048 |
+
print(history.history.keys())
|
1049 |
+
|
1050 |
+
# Retrieve metrics data using the correct keys
|
1051 |
+
accuracy = history.history.get('accuracy', [])
|
1052 |
+
val_accuracy = history.history.get('val_accuracy', [])
|
1053 |
+
precision = history.history.get('precision_5', []) # Updated to match the key
|
1054 |
+
val_precision = history.history.get('val_precision_5', [])
|
1055 |
+
recall = history.history.get('recall_5', []) # Updated to match the key
|
1056 |
+
val_recall = history.history.get('val_recall_5', [])
|
1057 |
+
f1_score = history.history.get('f1_score', [])
|
1058 |
+
val_f1_score = history.history.get('val_f1_score', [])
|
1059 |
+
|
1060 |
+
# Determine the range of epochs
|
1061 |
+
epochs_range = range(1, len(accuracy) + 1)
|
1062 |
+
|
1063 |
+
plt.figure(figsize=(14, 10))
|
1064 |
+
plt.suptitle('Training and Validation Metrics')
|
1065 |
+
|
1066 |
+
# Plot accuracy
|
1067 |
+
if accuracy and val_accuracy:
|
1068 |
+
plt.subplot(2, 2, 1)
|
1069 |
+
plt.plot(epochs_range, accuracy, label='Training Accuracy')
|
1070 |
+
plt.plot(epochs_range, val_accuracy, label='Validation Accuracy')
|
1071 |
+
plt.title('Accuracy')
|
1072 |
+
plt.xlabel('Epochs')
|
1073 |
+
plt.ylabel('Accuracy')
|
1074 |
+
plt.legend()
|
1075 |
+
|
1076 |
+
# Plot precision
|
1077 |
+
if precision and val_precision:
|
1078 |
+
plt.subplot(2, 2, 2)
|
1079 |
+
plt.plot(epochs_range, precision, label='Training Precision')
|
1080 |
+
plt.plot(epochs_range, val_precision, label='Validation Precision')
|
1081 |
+
plt.title('Precision')
|
1082 |
+
plt.xlabel('Epochs')
|
1083 |
+
plt.ylabel('Precision')
|
1084 |
+
plt.legend()
|
1085 |
+
|
1086 |
+
# Plot recall
|
1087 |
+
if recall and val_recall:
|
1088 |
+
plt.subplot(2, 2, 3)
|
1089 |
+
plt.plot(epochs_range, recall, label='Training Recall')
|
1090 |
+
plt.plot(epochs_range, val_recall, label='Validation Recall')
|
1091 |
+
plt.title('Recall')
|
1092 |
+
plt.xlabel('Epochs')
|
1093 |
+
plt.ylabel('Recall')
|
1094 |
+
plt.legend()
|
1095 |
+
|
1096 |
+
# Plot F1-score
|
1097 |
+
if f1_score and val_f1_score:
|
1098 |
+
plt.subplot(2, 2, 4)
|
1099 |
+
plt.plot(epochs_range, f1_score, label='Training F1 Score')
|
1100 |
+
plt.plot(epochs_range, val_f1_score, label='Validation F1 Score')
|
1101 |
+
plt.title('F1 Score')
|
1102 |
+
plt.xlabel('Epochs')
|
1103 |
+
plt.ylabel('F1 Score')
|
1104 |
+
plt.legend()
|
1105 |
+
|
1106 |
+
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
|
1107 |
+
plt.show()
|
1108 |
+
|
1109 |
+
"""####Evaluate the model"""
|
1110 |
+
|
1111 |
+
X_test, Y_test = load_images_and_labels(test_images2, test_labels2, target_size=(128, 128))
|
1112 |
+
results = best_model.evaluate(X_test, Y_test, verbose=1)
|
1113 |
+
|
1114 |
+
print(f"Test Loss: {results[0]}")
|
1115 |
+
print(f"Test Accuracy: {results[1]}")
|
1116 |
+
print(f"Test Precision: {results[2]}")
|
1117 |
+
print(f"Test Recall: {results[3]}")
|
1118 |
+
print(f"Test F1 Score: {results[4]}")
|
1119 |
+
|
1120 |
+
predictions = best_model.predict(X_test)
|
1121 |
+
predicted_classes = np.argmax(predictions, axis=1)
|
1122 |
+
true_classes = np.argmax(Y_test, axis=1)
|
1123 |
+
|
1124 |
+
# Compute the confusion matrix
|
1125 |
+
cm = confusion_matrix(true_classes, predicted_classes)
|
1126 |
+
class_names=['1','2','3','4']
|
1127 |
+
|
1128 |
+
# Plot the confusion matrix
|
1129 |
+
plt.figure(figsize=(10, 8))
|
1130 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap='Blues', xticklabels=class_names, yticklabels=class_names)
|
1131 |
+
plt.title('Confusion Matrix')
|
1132 |
+
plt.ylabel('Actual Class')
|
1133 |
+
plt.xlabel('Predicted Class')
|
1134 |
+
plt.show()
|
1135 |
+
|
1136 |
+
"""####Save the model"""
|
1137 |
+
|
1138 |
+
model_path = "/content/drive/My Drive/modelCNN2.h5"
|
1139 |
+
best_model.save(model_path)
|
1140 |
+
|
1141 |
+
"""### 4.1.3 Third model (SVM)"""
|
1142 |
+
|
1143 |
+
# Define the parameter grid
|
1144 |
+
param_grid = {
|
1145 |
+
'C': [0.1, 1, 10, 100],
|
1146 |
+
'gamma': [1, 0.1, 0.01, 0.001],
|
1147 |
+
'kernel': ['rbf', 'poly', 'sigmoid']
|
1148 |
+
}
|
1149 |
+
|
1150 |
+
# Create a Support Vector Classifier
|
1151 |
+
svm = SVC(probability=True)
|
1152 |
+
|
1153 |
+
# Create a GridSearchCV object
|
1154 |
+
grid_search = GridSearchCV(svm, param_grid, cv=3, verbose=2, scoring='accuracy')
|
1155 |
+
|
1156 |
+
# Fit GridSearchCV
|
1157 |
+
grid_search.fit(np.array(train_features), np.array(train_labels))
|
1158 |
+
|
1159 |
+
print("Best parameters:", grid_search.best_params_)
|
1160 |
+
print("Best cross-validation score: {:.2f}".format(grid_search.best_score_))
|
1161 |
+
|
1162 |
+
# Train the model with the best parameters
|
1163 |
+
best_svm = grid_search.best_estimator_
|
1164 |
+
|
1165 |
+
# Predict on the test set
|
1166 |
+
predictions = best_svm.predict(np.array(test_features))
|
1167 |
+
|
1168 |
+
print(classification_report(test_labels, predictions))
|
1169 |
+
print("Accuracy:", accuracy_score(test_labels, predictions))
|
1170 |
+
|
1171 |
+
# Compute the confusion matrix
|
1172 |
+
cm = confusion_matrix(test_labels, predictions)
|
1173 |
+
|
1174 |
+
# Plot the confusion matrix
|
1175 |
+
plt.figure(figsize=(10, 7))
|
1176 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=np.unique(test_labels), yticklabels=np.unique(test_labels))
|
1177 |
+
plt.xlabel('Predicted Labels')
|
1178 |
+
plt.ylabel('True Labels')
|
1179 |
+
plt.title('Confusion Matrix')
|
1180 |
+
plt.show()
|
1181 |
+
|
1182 |
+
class CustomCNN(nn.Module):
|
1183 |
+
def __init__(self):
|
1184 |
+
super(CustomCNN, self).__init__()
|
1185 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
|
1186 |
+
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
|
1187 |
+
self.pool = nn.MaxPool2d(2, 2)
|
1188 |
+
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
|
1189 |
+
self.conv4 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
|
1190 |
+
|
1191 |
+
def forward(self, x):
|
1192 |
+
x = self.pool(F.relu(self.conv1(x)))
|
1193 |
+
x = self.pool(F.relu(self.conv2(x)))
|
1194 |
+
x = self.pool(F.relu(self.conv3(x)))
|
1195 |
+
x = self.pool(F.relu(self.conv4(x)))
|
1196 |
+
# Flatten the output for feature extraction
|
1197 |
+
x = x.view(x.size(0), -1)
|
1198 |
+
return x
|
1199 |
+
|
1200 |
+
# Initialize the model
|
1201 |
+
model_cnn = CustomCNN()
|
1202 |
+
|
1203 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
1204 |
+
model_cnn.to(device)
|
1205 |
+
model_cnn.eval()
|
1206 |
+
|
1207 |
+
def extract_features(data_loader):
|
1208 |
+
features = []
|
1209 |
+
labels = []
|
1210 |
+
with torch.no_grad():
|
1211 |
+
for inputs, targets in data_loader:
|
1212 |
+
inputs = inputs.to(device)
|
1213 |
+
outputs = model_cnn(inputs)
|
1214 |
+
outputs = outputs.view(outputs.size(0), -1) # Flatten the output
|
1215 |
+
features.append(outputs.cpu().numpy())
|
1216 |
+
labels.append(targets.numpy())
|
1217 |
+
features = np.concatenate(features, axis=0)
|
1218 |
+
labels = np.concatenate(labels, axis=0)
|
1219 |
+
return features, labels
|
1220 |
+
|
1221 |
+
train_features, train_labels = extract_features(train_loader2)
|
1222 |
+
val_features, val_labels = extract_features(val_loader2)
|
1223 |
+
test_features, test_labels = extract_features(test_loader2)
|
1224 |
+
|
1225 |
+
class_names = ['1', '2', '3', '4']
|
1226 |
+
|
1227 |
+
# Function to plot confusion matrix
|
1228 |
+
def plot_confusion_matrix(cm, class_names, title='Confusion Matrix'):
|
1229 |
+
plt.figure(figsize=(8, 6))
|
1230 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False, xticklabels=class_names, yticklabels=class_names)
|
1231 |
+
plt.xlabel('Predicted labels')
|
1232 |
+
plt.ylabel('True labels')
|
1233 |
+
plt.title(title)
|
1234 |
+
plt.show()
|
1235 |
+
|
1236 |
+
svm_model = SVC(kernel='rbf', C=10, gamma=0.1)
|
1237 |
+
svm_model.fit(train_features, train_labels)
|
1238 |
+
|
1239 |
+
# [ c 1, gamma 1]
|
1240 |
+
# Predict on the training set
|
1241 |
+
train_predictions = svm_model.predict(train_features)
|
1242 |
+
|
1243 |
+
# Evaluate on the training set
|
1244 |
+
train_accuracy = accuracy_score(train_labels, train_predictions)
|
1245 |
+
train_recall = recall_score(train_labels, train_predictions, average='macro')
|
1246 |
+
train_precision = precision_score(train_labels, train_predictions, average='macro')
|
1247 |
+
train_f1 = f1_metric(train_labels, train_predictions, average='macro')
|
1248 |
+
|
1249 |
+
print(f'Training Accuracy: {train_accuracy:.4f}')
|
1250 |
+
print(f'Training Recall: {train_recall:.4f}')
|
1251 |
+
print(f'Training Precision: {train_precision:.4f}')
|
1252 |
+
print(f'Training F1 Score: {train_f1:.4f}')
|
1253 |
+
|
1254 |
+
# Predict on the validation set
|
1255 |
+
val_predictions = svm_model.predict(val_features)
|
1256 |
+
|
1257 |
+
# Evaluate on the validation set
|
1258 |
+
val_accuracy = accuracy_score(val_labels, val_predictions)
|
1259 |
+
val_recall = recall_score(val_labels, val_predictions, average='macro')
|
1260 |
+
val_precision = precision_score(val_labels, val_predictions, average='macro')
|
1261 |
+
val_f1 = f1_metric(val_labels, val_predictions, average='macro')
|
1262 |
+
|
1263 |
+
print(f'Validation Accuracy: {val_accuracy:.4f}')
|
1264 |
+
print(f'Validation Recall: {val_recall:.4f}')
|
1265 |
+
print(f'Validation Precision: {val_precision:.4f}')
|
1266 |
+
print(f'Validation F1 Score: {val_f1:.4f}')
|
1267 |
+
|
1268 |
+
# Predict on the test set
|
1269 |
+
test_predictions = svm_model.predict(test_features)
|
1270 |
+
|
1271 |
+
# Evaluate on the test set
|
1272 |
+
test_accuracy = accuracy_score(test_labels, test_predictions)
|
1273 |
+
test_recall = recall_score(test_labels, test_predictions, average='macro')
|
1274 |
+
test_precision = precision_score(test_labels, test_predictions, average='macro')
|
1275 |
+
test_f1 = f1_metric(test_labels, test_predictions, average='macro')
|
1276 |
+
|
1277 |
+
print(f"Test Accuracy: {test_accuracy:.4f}")
|
1278 |
+
print(f"Test Recall: {test_recall:.4f}")
|
1279 |
+
print(f"Test Precision: {test_precision:.4f}")
|
1280 |
+
print(f"Test F1 Score: {test_f1:.4f}")
|
1281 |
+
|
1282 |
+
# Generate and plot confusion matrix for test data
|
1283 |
+
test_cm = confusion_matrix(test_labels, test_predictions)
|
1284 |
+
# Plot the confusion matrix
|
1285 |
+
plot_confusion_matrix(test_cm, class_names, title='Test Confusion Matrix')
|
1286 |
+
|
1287 |
+
# Save the model to disk
|
1288 |
+
dump(svm_model, 'svm_model1.joblib')
|
1289 |
+
|
1290 |
+
# [ c 10, gamma 0.1]
|
1291 |
+
# Predict on the training set
|
1292 |
+
train_predictions = svm_model.predict(train_features)
|
1293 |
+
|
1294 |
+
# Evaluate on the training set
|
1295 |
+
train_accuracy = accuracy_score(train_labels, train_predictions)
|
1296 |
+
train_recall = recall_score(train_labels, train_predictions, average='macro')
|
1297 |
+
train_precision = precision_score(train_labels, train_predictions, average='macro')
|
1298 |
+
train_f1 = f1_metric(train_labels, train_predictions, average='macro')
|
1299 |
+
|
1300 |
+
print(f'Training Accuracy: {train_accuracy:.4f}')
|
1301 |
+
print(f'Training Recall: {train_recall:.4f}')
|
1302 |
+
print(f'Training Precision: {train_precision:.4f}')
|
1303 |
+
print(f'Training F1 Score: {train_f1:.4f}')
|
1304 |
+
|
1305 |
+
# Predict on the validation set
|
1306 |
+
val_predictions = svm_model.predict(val_features)
|
1307 |
+
|
1308 |
+
# Evaluate on the validation set
|
1309 |
+
val_accuracy = accuracy_score(val_labels, val_predictions)
|
1310 |
+
val_recall = recall_score(val_labels, val_predictions, average='macro')
|
1311 |
+
val_precision = precision_score(val_labels, val_predictions, average='macro')
|
1312 |
+
val_f1 = f1_metric(val_labels, val_predictions, average='macro')
|
1313 |
+
|
1314 |
+
print(f'Validation Accuracy: {val_accuracy:.4f}')
|
1315 |
+
print(f'Validation Recall: {val_recall:.4f}')
|
1316 |
+
print(f'Validation Precision: {val_precision:.4f}')
|
1317 |
+
print(f'Validation F1 Score: {val_f1:.4f}')
|
1318 |
+
|
1319 |
+
# Predict on the test set
|
1320 |
+
test_predictions = svm_model.predict(test_features)
|
1321 |
+
|
1322 |
+
# Evaluate on the test set
|
1323 |
+
test_accuracy = accuracy_score(test_labels, test_predictions)
|
1324 |
+
test_recall = recall_score(test_labels, test_predictions, average='macro')
|
1325 |
+
test_precision = precision_score(test_labels, test_predictions, average='macro')
|
1326 |
+
test_f1 = f1_metric(test_labels, test_predictions, average='macro')
|
1327 |
+
|
1328 |
+
print(f"Test Accuracy: {test_accuracy:.4f}")
|
1329 |
+
print(f"Test Recall: {test_recall:.4f}")
|
1330 |
+
print(f"Test Precision: {test_precision:.4f}")
|
1331 |
+
print(f"Test F1 Score: {test_f1:.4f}")
|
1332 |
+
|
1333 |
+
# Generate and plot confusion matrix for test data
|
1334 |
+
test_cm = confusion_matrix(test_labels, test_predictions)
|
1335 |
+
# Plot the confusion matrix
|
1336 |
+
plot_confusion_matrix(test_cm, class_names, title='Test Confusion Matrix')
|
1337 |
+
|
1338 |
+
# Save the model to disk
|
1339 |
+
dump(svm_model, 'svm_model2.joblib')
|
1340 |
+
|
1341 |
+
svm_model = SVC(kernel='poly', C=10, gamma=0.1)
|
1342 |
+
svm_model.fit(train_features, train_labels)
|
1343 |
+
|
1344 |
+
# [ c 1, gamma 0.1]
|
1345 |
+
|
1346 |
+
# Predict on the training set
|
1347 |
+
train_predictions = svm_model.predict(train_features)
|
1348 |
+
|
1349 |
+
# Evaluate on the training set
|
1350 |
+
train_accuracy = accuracy_score(train_labels, train_predictions)
|
1351 |
+
train_recall = recall_score(train_labels, train_predictions, average='macro')
|
1352 |
+
train_precision = precision_score(train_labels, train_predictions, average='macro')
|
1353 |
+
train_f1 = f1_metric(train_labels, train_predictions, average='macro')
|
1354 |
+
|
1355 |
+
print(f'Training Accuracy: {train_accuracy:.4f}')
|
1356 |
+
print(f'Training Recall: {train_recall:.4f}')
|
1357 |
+
print(f'Training Precision: {train_precision:.4f}')
|
1358 |
+
print(f'Training F1 Score: {train_f1:.4f}')
|
1359 |
+
|
1360 |
+
# Predict on the validation set
|
1361 |
+
val_predictions = svm_model.predict(val_features)
|
1362 |
+
|
1363 |
+
# Evaluate on the validation set
|
1364 |
+
val_accuracy = accuracy_score(val_labels, val_predictions)
|
1365 |
+
val_recall = recall_score(val_labels, val_predictions, average='macro')
|
1366 |
+
val_precision = precision_score(val_labels, val_predictions, average='macro')
|
1367 |
+
val_f1 = f1_metric(val_labels, val_predictions, average='macro')
|
1368 |
+
|
1369 |
+
print(f'Validation Accuracy: {val_accuracy:.4f}')
|
1370 |
+
print(f'Validation Recall: {val_recall:.4f}')
|
1371 |
+
print(f'Validation Precision: {val_precision:.4f}')
|
1372 |
+
print(f'Validation F1 Score: {val_f1:.4f}')
|
1373 |
+
|
1374 |
+
# Predict on the test set
|
1375 |
+
test_predictions = svm_model.predict(test_features)
|
1376 |
+
|
1377 |
+
# Evaluate on the test set
|
1378 |
+
test_accuracy = accuracy_score(test_labels, test_predictions)
|
1379 |
+
test_recall = recall_score(test_labels, test_predictions, average='macro')
|
1380 |
+
test_precision = precision_score(test_labels, test_predictions, average='macro')
|
1381 |
+
test_f1 = f1_metric(test_labels, test_predictions, average='macro')
|
1382 |
+
|
1383 |
+
print(f"Test Accuracy: {test_accuracy:.4f}")
|
1384 |
+
print(f"Test Recall: {test_recall:.4f}")
|
1385 |
+
print(f"Test Precision: {test_precision:.4f}")
|
1386 |
+
print(f"Test F1 Score: {test_f1:.4f}")
|
1387 |
+
|
1388 |
+
# Save the model to disk
|
1389 |
+
dump(svm_model, 'svm_model3.joblib')
|
1390 |
+
|
1391 |
+
# Generate and plot confusion matrix for test data
|
1392 |
+
test_cm = confusion_matrix(test_labels, test_predictions)
|
1393 |
+
# Plot the confusion matrix
|
1394 |
+
plot_confusion_matrix(test_cm, class_names, title='Test Confusion Matrix')
|
1395 |
+
|
1396 |
+
# [ c 10, gamma 0.1]
|
1397 |
+
|
1398 |
+
# Predict on the training set
|
1399 |
+
train_predictions = svm_model.predict(train_features)
|
1400 |
+
|
1401 |
+
# Evaluate on the training set
|
1402 |
+
train_accuracy = accuracy_score(train_labels, train_predictions)
|
1403 |
+
train_recall = recall_score(train_labels, train_predictions, average='macro')
|
1404 |
+
train_precision = precision_score(train_labels, train_predictions, average='macro')
|
1405 |
+
train_f1 = f1_metric(train_labels, train_predictions, average='macro')
|
1406 |
+
|
1407 |
+
print(f'Training Accuracy: {train_accuracy:.4f}')
|
1408 |
+
print(f'Training Recall: {train_recall:.4f}')
|
1409 |
+
print(f'Training Precision: {train_precision:.4f}')
|
1410 |
+
print(f'Training F1 Score: {train_f1:.4f}')
|
1411 |
+
|
1412 |
+
# Predict on the validation set
|
1413 |
+
val_predictions = svm_model.predict(val_features)
|
1414 |
+
|
1415 |
+
# Evaluate on the validation set
|
1416 |
+
val_accuracy = accuracy_score(val_labels, val_predictions)
|
1417 |
+
val_recall = recall_score(val_labels, val_predictions, average='macro')
|
1418 |
+
val_precision = precision_score(val_labels, val_predictions, average='macro')
|
1419 |
+
val_f1 = f1_metric(val_labels, val_predictions, average='macro')
|
1420 |
+
|
1421 |
+
print(f'Validation Accuracy: {val_accuracy:.4f}')
|
1422 |
+
print(f'Validation Recall: {val_recall:.4f}')
|
1423 |
+
print(f'Validation Precision: {val_precision:.4f}')
|
1424 |
+
print(f'Validation F1 Score: {val_f1:.4f}')
|
1425 |
+
|
1426 |
+
# Predict on the test set
|
1427 |
+
test_predictions = svm_model.predict(test_features)
|
1428 |
+
|
1429 |
+
# Evaluate on the test set
|
1430 |
+
test_accuracy = accuracy_score(test_labels, test_predictions)
|
1431 |
+
test_recall = recall_score(test_labels, test_predictions, average='macro')
|
1432 |
+
test_precision = precision_score(test_labels, test_predictions, average='macro')
|
1433 |
+
test_f1 = f1_metric(test_labels, test_predictions, average='macro')
|
1434 |
+
|
1435 |
+
print(f"Test Accuracy: {test_accuracy:.4f}")
|
1436 |
+
print(f"Test Recall: {test_recall:.4f}")
|
1437 |
+
print(f"Test Precision: {test_precision:.4f}")
|
1438 |
+
print(f"Test F1 Score: {test_f1:.4f}")
|
1439 |
+
|
1440 |
+
# Save the model to disk
|
1441 |
+
dump(svm_model, 'svm_model4.joblib')
|
1442 |
+
|
1443 |
+
# Generate and plot confusion matrix for test data
|
1444 |
+
test_cm = confusion_matrix(test_labels, test_predictions)
|
1445 |
+
# Plot the confusion matrix
|
1446 |
+
plot_confusion_matrix(test_cm, class_names, title='Test Confusion Matrix')
|