summarizeEmail / app.py
rijdev's picture
Create app.py
4ebd421 verified
import gradio as gr
from transformers import pipeline
# Load summarization pipeline
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Simple keyword-based action classifier
def classify_action(email_text):
email_lower = email_text.lower()
if "meeting" in email_lower or "schedule" in email_lower:
return "Schedule a meeting"
elif "question" in email_lower or "reply" in email_lower or "can you" in email_lower:
return "Reply"
elif "unsubscribe" in email_lower or "spam" in email_lower:
return "Delete or Mark as Spam"
else:
return "Read and Archive"
# Main function
def summarize_and_recommend(email_text):
if not email_text.strip():
return "No content provided.", "No action"
# Summarize
summary = summarizer(email_text, max_length=130, min_length=30, do_sample=False)[0]['summary_text']
# Recommend action
action = classify_action(email_text)
return summary, action
# Gradio UI
iface = gr.Interface(
fn=summarize_and_recommend,
inputs=gr.Textbox(lines=15, placeholder="Paste your email content here..."),
outputs=[
gr.Textbox(label="Summary"),
gr.Textbox(label="Suggested Action")
],
title="📩 Smart Email Summarizer & Action Recommender",
description="Paste an email to get a quick summary and an action suggestion. Uses Hugging Face's BART model for summarization.",
theme="default"
)
iface.launch()