riiswa's picture
Add warning on mujoco using
1240765
raw
history blame
6.49 kB
import glob
import os
import pickle
import torch
import numpy as np
import gymnasium as gym
from huggingface_hub.utils import EntryNotFoundError
from huggingface_sb3 import load_from_hub
from moviepy.video.compositing.concatenate import concatenate_videoclips
from moviepy.video.io.VideoFileClip import VideoFileClip
from rl_zoo3 import ALGOS
from gymnasium.wrappers import RecordVideo
from stable_baselines3.common.running_mean_std import RunningMeanStd
import os
import tarfile
import urllib.request
def install_mujoco():
mujoco_url = "https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz"
mujoco_file = "mujoco210-linux-x86_64.tar.gz"
mujoco_dir = "mujoco210"
# Check if the directory already exists
if not os.path.exists("mujoco210"):
# Download Mujoco if not exists
print("Downloading Mujoco...")
urllib.request.urlretrieve(mujoco_url, mujoco_file)
# Extract Mujoco
print("Extracting Mujoco...")
with tarfile.open(mujoco_file, "r:gz") as tar:
tar.extractall()
# Clean up the downloaded tar file
os.remove(mujoco_file)
print("Mujoco installed successfully!")
else:
print("Mujoco already installed.")
# Set environment variable MUJOCO_PY_MUJOCO_PATH
os.environ["MUJOCO_PY_MUJOCO_PATH"] = os.path.abspath(mujoco_dir)
ld_library_path = os.environ.get("LD_LIBRARY_PATH", "")
mujoco_bin_path = os.path.join(os.path.abspath(mujoco_dir), "bin")
if mujoco_bin_path not in ld_library_path:
os.environ["LD_LIBRARY_PATH"] = ld_library_path + ":" + mujoco_bin_path
class NormalizeObservation(gym.Wrapper):
def __init__(self, env: gym.Env, clip_obs: float, obs_rms: RunningMeanStd, epsilon: float):
gym.Wrapper.__init__(self, env)
self.clip_obs = clip_obs
self.obs_rms = obs_rms
self.epsilon = epsilon
def step(self, action):
observation, reward, terminated, truncated, info = self.env.step(action)
observation = self.normalize(np.array([observation]))[0]
return observation, reward, terminated, truncated, info
def reset(self, **kwargs):
observation, info = self.env.reset(**kwargs)
return self.normalize(np.array([observation]))[0], info
def normalize(self, obs):
return np.clip((obs - self.obs_rms.mean) / np.sqrt(self.obs_rms.var + self.epsilon), -self.clip_obs, self.clip_obs)
class CreateDataset(gym.Wrapper):
def __init__(self, env: gym.Env):
gym.Wrapper.__init__(self, env)
self.observations = []
self.actions = []
self.last_observation = None
def step(self, action):
self.observations.append(self.last_observation)
self.actions.append(action)
observation, reward, terminated, truncated, info = self.env.step(action)
self.last_observation = observation
return observation, reward, terminated, truncated, info
def reset(self, **kwargs):
observation, info = self.env.reset(**kwargs)
self.last_observation = observation
return observation, info
def get_dataset(self):
if isinstance(self.env.action_space, gym.spaces.Box) and self.env.action_space.shape != (1,):
actions = np.vstack(self.actions)
else:
actions = np.hstack(self.actions)
return np.vstack(self.observations), actions
def rollouts(env, policy, num_episodes=1):
for episode in range(num_episodes):
done = False
observation, _ = env.reset()
while not done:
action = policy(observation)
observation, reward, terminated, truncated, _ = env.step(action)
done = terminated or truncated
env.close()
def generate_dataset_from_expert(algo, env_name, num_train_episodes=5, num_test_episodes=2, force=False):
if env_name.startswith("Swimmer") or env_name.startswith("Hopper"):
install_mujoco()
dataset_path = os.path.join("datasets", f"{algo}-{env_name}.pt")
video_path = os.path.join("videos", f"{algo}-{env_name}.mp4")
if os.path.exists(dataset_path) and os.path.exists(video_path) and not force:
return dataset_path, video_path
repo_id = f"sb3/{algo}-{env_name}"
policy_file = f"{algo}-{env_name}.zip"
expert_path = load_from_hub(repo_id, policy_file)
try:
vec_normalize_path = load_from_hub(repo_id, "vec_normalize.pkl")
with open(vec_normalize_path, "rb") as f:
vec_normalize = pickle.load(f)
if vec_normalize.norm_obs:
vec_normalize_params = {"clip_obs": vec_normalize.clip_obs, "obs_rms": vec_normalize.obs_rms, "epsilon": vec_normalize.epsilon}
else:
vec_normalize_params = None
except EntryNotFoundError:
vec_normalize_params = None
expert = ALGOS[algo].load(expert_path)
train_env = gym.make(env_name)
train_env = CreateDataset(train_env)
if vec_normalize_params is not None:
train_env = NormalizeObservation(train_env, **vec_normalize_params)
test_env = gym.make(env_name, render_mode="rgb_array")
test_env = CreateDataset(test_env)
if vec_normalize_params is not None:
test_env = NormalizeObservation(test_env, **vec_normalize_params)
test_env = RecordVideo(test_env, video_folder="videos", episode_trigger=lambda x: True, name_prefix=f"{algo}-{env_name}")
def policy(obs):
return expert.predict(obs, deterministic=True)[0]
os.makedirs("videos", exist_ok=True)
rollouts(train_env, policy, num_train_episodes)
rollouts(test_env, policy, num_test_episodes)
train_observations, train_actions = train_env.get_dataset()
test_observations, test_actions = test_env.get_dataset()
dataset = {
"train_input": torch.from_numpy(train_observations),
"test_input": torch.from_numpy(test_observations),
"train_label": torch.from_numpy(train_actions),
"test_label": torch.from_numpy(test_actions)
}
os.makedirs("datasets", exist_ok=True)
torch.save(dataset, dataset_path)
video_files = glob.glob(os.path.join("videos", f"{algo}-{env_name}-episode*.mp4"))
clips = [VideoFileClip(file) for file in video_files]
final_clip = concatenate_videoclips(clips)
final_clip.write_videofile(video_path, codec="libx264", fps=24)
return dataset_path, video_path
if __name__ == "__main__":
generate_dataset_from_expert("ppo", "CartPole-v1", force=True)