antfraia commited on
Commit
2900706
1 Parent(s): e4f375b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -31
app.py CHANGED
@@ -1,29 +1,85 @@
 
1
  import os
2
-
3
  import streamlit as st
4
  from dotenv import load_dotenv
 
5
  from langchain.callbacks.base import BaseCallbackHandler
6
  from langchain.chains import ConversationalRetrievalChain
7
  from langchain.chat_models import ChatOpenAI
 
 
8
  from langchain.embeddings import OpenAIEmbeddings
 
9
  from langchain.memory import ConversationBufferMemory
10
  from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
 
11
  from langchain.vectorstores import Chroma
12
 
 
13
  load_dotenv()
14
-
15
- website_url = os.environ.get('WEBSITE_URL', 'a website')
16
-
17
- st.set_page_config(page_title=f'Chat with {website_url}')
18
- st.title('Chat with a website')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
  @st.cache_resource(ttl='1h')
21
  def get_retriever():
22
  embeddings = OpenAIEmbeddings()
23
  vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
24
-
25
  retriever = vectordb.as_retriever(search_type='mmr')
26
-
27
  return retriever
28
 
29
  class StreamHandler(BaseCallbackHandler):
@@ -35,27 +91,9 @@ class StreamHandler(BaseCallbackHandler):
35
  self.text += token
36
  self.container.markdown(self.text)
37
 
38
- retriever = get_retriever()
39
-
40
- msgs = StreamlitChatMessageHistory()
41
- memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
42
-
43
- llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
44
- qa_chain = ConversationalRetrievalChain.from_llm(
45
- llm, retriever=retriever, memory=memory, verbose=False
46
- )
47
-
48
- if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
49
- msgs.clear()
50
- msgs.add_ai_message(f'Ask me anything about {website_url}!')
51
-
52
- avatars = {'human': 'user', 'ai': 'assistant'}
53
- for msg in msgs.messages:
54
- st.chat_message(avatars[msg.type]).write(msg.content)
55
-
56
- if user_query := st.chat_input(placeholder='Ask me anything!'):
57
- st.chat_message('user').write(user_query)
58
 
59
- with st.chat_message('assistant'):
60
- stream_handler = StreamHandler(st.empty())
61
- response = qa_chain.run(user_query, callbacks=[stream_handler])
 
1
+ # Combined Imports
2
  import os
 
3
  import streamlit as st
4
  from dotenv import load_dotenv
5
+ from apify_client import ApifyClient
6
  from langchain.callbacks.base import BaseCallbackHandler
7
  from langchain.chains import ConversationalRetrievalChain
8
  from langchain.chat_models import ChatOpenAI
9
+ from langchain.document_loaders import ApifyDatasetLoader
10
+ from langchain.document_loaders.base import Document
11
  from langchain.embeddings import OpenAIEmbeddings
12
+ from langchain.embeddings.openai import OpenAIEmbeddings
13
  from langchain.memory import ConversationBufferMemory
14
  from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
15
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
16
  from langchain.vectorstores import Chroma
17
 
18
+ # Environment variables and configuration
19
  load_dotenv()
20
+ WEBSITE_URL = os.environ.get('WEBSITE_URL', 'a website')
21
+ OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
22
+ APIFY_API_TOKEN = os.environ.get('APIFY_API_TOKEN')
23
+
24
+ # Scraper Functionality
25
+ def scrape_website():
26
+ apify_client = ApifyClient(APIFY_API_TOKEN)
27
+ st.write(f'Extracting data from "{WEBSITE_URL}". Please wait...')
28
+ actor_run_info = apify_client.actor('apify/website-content-crawler').call(
29
+ run_input={'startUrls': [{'url': WEBSITE_URL}]}
30
+ )
31
+ st.write('Saving data into the vector database. Please wait...')
32
+ loader = ApifyDatasetLoader(
33
+ dataset_id=actor_run_info['defaultDatasetId'],
34
+ dataset_mapping_function=lambda item: Document(
35
+ page_content=item['text'] or '', metadata={'source': item['url']}
36
+ ),
37
+ )
38
+ documents = loader.load()
39
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=100)
40
+ docs = text_splitter.split_documents(documents)
41
+
42
+ embedding = OpenAIEmbeddings(api_key=OPENAI_API_KEY)
43
+ vectordb = Chroma.from_documents(
44
+ documents=docs,
45
+ embedding=embedding,
46
+ persist_directory='db2',
47
+ )
48
+ vectordb.persist()
49
+ st.write('All done!')
50
+
51
+ # Chat Functionality
52
+ def chat_with_website():
53
+ st.set_page_config(page_title=f'Chat with {WEBSITE_URL}')
54
+ st.title('Chat with a website')
55
+ retriever = get_retriever()
56
+ msgs = StreamlitChatMessageHistory()
57
+ memory = ConversationBufferMemory(memory_key='chat_history', chat_memory=msgs, return_messages=True)
58
+
59
+ llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0, streaming=True)
60
+ qa_chain = ConversationalRetrievalChain.from_llm(
61
+ llm, retriever=retriever, memory=memory, verbose=False
62
+ )
63
+
64
+ if st.sidebar.button('Clear message history') or len(msgs.messages) == 0:
65
+ msgs.clear()
66
+ msgs.add_ai_message(f'Ask me anything about {WEBSITE_URL}!')
67
+
68
+ avatars = {'human': 'user', 'ai': 'assistant'}
69
+ for msg in msgs.messages:
70
+ st.chat_message(avatars[msg.type]).write(msg.content)
71
+
72
+ if user_query := st.chat_input(placeholder='Ask me anything!'):
73
+ st.chat_message('user').write(user_query)
74
+ with st.chat_message('assistant'):
75
+ stream_handler = StreamHandler(st.empty())
76
+ response = qa_chain.run(user_query, callbacks=[stream_handler])
77
 
78
  @st.cache_resource(ttl='1h')
79
  def get_retriever():
80
  embeddings = OpenAIEmbeddings()
81
  vectordb = Chroma(persist_directory='db', embedding_function=embeddings)
 
82
  retriever = vectordb.as_retriever(search_type='mmr')
 
83
  return retriever
84
 
85
  class StreamHandler(BaseCallbackHandler):
 
91
  self.text += token
92
  self.container.markdown(self.text)
93
 
94
+ # Main App Flow
95
+ if st.sidebar.button("Scrape a new website"):
96
+ scrape_website()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ if st.sidebar.button("Chat with scraped website"):
99
+ chat_with_website()