Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,66 +1,56 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from apify_client import ApifyClient
|
3 |
import requests
|
4 |
-
import pandas as pd
|
5 |
|
|
|
6 |
def fetch_google_maps_info(website_name):
|
7 |
apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
8 |
-
|
9 |
-
# Prepare the Actor input for Google Maps
|
10 |
-
run_input = {
|
11 |
-
"searchStringsArray": [website_name],
|
12 |
-
# ... other parameters
|
13 |
-
}
|
14 |
-
|
15 |
-
# Run the Actor and wait for it to finish
|
16 |
run = apify_client.actor("nwua9Gu5YrADL7ZDj").call(run_input=run_input)
|
17 |
-
|
18 |
-
# Fetch Actor results from the run's dataset
|
19 |
items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
|
20 |
return items[0] if items else None
|
21 |
|
|
|
22 |
def fetch_weather_info(lat, lon):
|
23 |
API_KEY = "91b23cab82ee530b2052c8757e343b0d"
|
24 |
url = f"https://api.openweathermap.org/data/3.0/onecall?lat={lat}&lon={lon}&exclude=hourly,daily&appid={API_KEY}"
|
25 |
response = requests.get(url)
|
26 |
return response.json()
|
27 |
|
28 |
-
#
|
|
|
|
|
29 |
website_name = st.text_input("Enter a website / company name:")
|
30 |
|
31 |
if website_name:
|
32 |
google_maps_data = fetch_google_maps_info(website_name)
|
33 |
|
34 |
if google_maps_data:
|
35 |
-
#
|
36 |
-
table_data = {}
|
37 |
-
for key, value in google_maps_data.items():
|
38 |
-
# Handle lists of strings
|
39 |
-
if isinstance(value, list) and all(isinstance(item, str) for item in value):
|
40 |
-
table_data[key] = ", ".join(value)
|
41 |
-
# Handle lists of dictionaries
|
42 |
-
elif isinstance(value, list) and all(isinstance(item, dict) for item in value):
|
43 |
-
table_data[key] = ", ".join([str(item) for item in value])
|
44 |
-
# Handle nested dictionaries
|
45 |
-
elif isinstance(value, dict):
|
46 |
-
table_data[key] = ", ".join([f"{k}: {v}" for k, v in value.items()])
|
47 |
-
else:
|
48 |
-
table_data[key] = value
|
49 |
-
|
50 |
-
st.table(table_data)
|
51 |
-
|
52 |
-
# Fetch weather info based on Google Maps data's location
|
53 |
lat = google_maps_data["location"]["lat"]
|
54 |
lng = google_maps_data["location"]["lng"]
|
55 |
-
|
56 |
if lat and lng:
|
57 |
-
# Display location on Streamlit map
|
58 |
-
df_location = pd.DataFrame({'lat': [lat], 'lon': [lng]})
|
59 |
-
st.map(df_location)
|
60 |
-
|
61 |
weather_data = fetch_weather_info(lat, lng)
|
62 |
current_weather = weather_data.get("current", {})
|
63 |
-
st.write(f"
|
64 |
-
st.write(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
else:
|
66 |
st.write("No results found for this website / company name on Google Maps.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from apify_client import ApifyClient
|
4 |
import requests
|
|
|
5 |
|
6 |
+
# Function to fetch Google Maps info
|
7 |
def fetch_google_maps_info(website_name):
|
8 |
apify_client = ApifyClient("apify_api_uz0y556N4IG2aLcESj67kmnGSUpHF12XAkLp")
|
9 |
+
run_input = {"searchStringsArray": [website_name]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
run = apify_client.actor("nwua9Gu5YrADL7ZDj").call(run_input=run_input)
|
|
|
|
|
11 |
items = list(apify_client.dataset(run["defaultDatasetId"]).iterate_items())
|
12 |
return items[0] if items else None
|
13 |
|
14 |
+
# Function to fetch weather info
|
15 |
def fetch_weather_info(lat, lon):
|
16 |
API_KEY = "91b23cab82ee530b2052c8757e343b0d"
|
17 |
url = f"https://api.openweathermap.org/data/3.0/onecall?lat={lat}&lon={lon}&exclude=hourly,daily&appid={API_KEY}"
|
18 |
response = requests.get(url)
|
19 |
return response.json()
|
20 |
|
21 |
+
# Streamlit app
|
22 |
+
st.title("Data Visualization")
|
23 |
+
|
24 |
website_name = st.text_input("Enter a website / company name:")
|
25 |
|
26 |
if website_name:
|
27 |
google_maps_data = fetch_google_maps_info(website_name)
|
28 |
|
29 |
if google_maps_data:
|
30 |
+
# Display location and fetch weather info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
lat = google_maps_data["location"]["lat"]
|
32 |
lng = google_maps_data["location"]["lng"]
|
|
|
33 |
if lat and lng:
|
|
|
|
|
|
|
|
|
34 |
weather_data = fetch_weather_info(lat, lng)
|
35 |
current_weather = weather_data.get("current", {})
|
36 |
+
st.write(f"**Location:** {lat}, {lng}")
|
37 |
+
st.write(f"**Temperature:** {current_weather.get('temp')}°C")
|
38 |
+
st.write(f"**Weather:** {current_weather.get('weather')[0].get('description')}")
|
39 |
+
|
40 |
+
# Display occupancy chart
|
41 |
+
st.subheader("Occupancy Data")
|
42 |
+
df_occupancy = pd.DataFrame()
|
43 |
+
for day, day_data in occupancy_data.items():
|
44 |
+
if day_data:
|
45 |
+
hours = [entry['hour'] for entry in day_data]
|
46 |
+
occupancy = [entry['occupancyPercent'] for entry in day_data]
|
47 |
+
df_occupancy[day] = pd.Series(occupancy, index=hours)
|
48 |
+
st.line_chart(df_occupancy, use_container_width=True)
|
49 |
+
|
50 |
+
# Display reviews data
|
51 |
+
st.subheader("Reviews Data")
|
52 |
+
st.write(f"Total Reviews Count: {reviews_data['reviewsCount']}")
|
53 |
+
df_reviews = pd.DataFrame(list(reviews_data['reviewsDistribution'].items()), columns=['Review', 'Count'])
|
54 |
+
st.bar_chart(df_reviews.set_index('Review'))
|
55 |
else:
|
56 |
st.write("No results found for this website / company name on Google Maps.")
|