richylyq commited on
Commit
dc149ba
·
1 Parent(s): cc4bac3

add translation materials

Browse files
Files changed (1) hide show
  1. app.py +87 -1
app.py CHANGED
@@ -1,9 +1,95 @@
1
  import gradio as gr
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
  def greet(name):
5
  return "Hello " + name + "!!"
6
 
7
 
8
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
9
  iface.launch()
 
1
  import gradio as gr
2
 
3
+ """
4
+ translation program for simple text
5
+ 1. detect language from langdetect
6
+ 2. translate to target language given by user
7
+
8
+ Example from
9
+ https://www.thepythoncode.com/article/machine-translation-using-huggingface-transformers-in-python
10
+
11
+ user_input:
12
+ string: string to be translated
13
+ target_lang: language to be translated to
14
+
15
+ Returns:
16
+ string: translated string of text
17
+ """
18
+
19
+ import argparse
20
+
21
+ import langid
22
+ from langdetect import DetectorFactory
23
+
24
+ DetectorFactory.seed = 0
25
+
26
+ from langdetect import detect
27
+ from transformers import pipeline
28
+
29
+
30
+ def detect_lang(article, target_lang):
31
+ """
32
+ Language Detection using library langdetect
33
+
34
+ Args:
35
+ article (string): article that user wish to translate
36
+ target_lang (string): language user want to translate article into
37
+
38
+ Returns:
39
+ string: detected language short form
40
+ """
41
+ result_lang = detect(article)
42
+ print(result_lang)
43
+ if result_lang == target_lang:
44
+ return result_lang
45
+ else:
46
+ return result_lang
47
+
48
+
49
+ def lang_detect(article, target_lang):
50
+ """
51
+ Language Detection using library langid
52
+
53
+ Args:
54
+ article (string): article that user wish to translate
55
+ target_lang (string): language user want to translate article into
56
+
57
+ Returns:
58
+ string: detected language short form
59
+ """
60
+
61
+ result_lang = langid.classify(article)
62
+ print(result_lang[0])
63
+ if result_lang == target_lang:
64
+ return result_lang[0]
65
+ else:
66
+ return result_lang[0]
67
+
68
+
69
+ def opus_trans(message, result_lang, target_lang):
70
+ """
71
+ Translation by Helsinki-NLP model
72
+
73
+ Args:
74
+ article (string): article that user wishes to translate
75
+ result_lang (string): detected language in short form
76
+ target_lang (string): language that user wishes to translate article into
77
+
78
+ Returns:
79
+ string: translated piece of article based off target_lang
80
+ """
81
+
82
+ task_name = f"translation_{result_lang}_to_{target_lang}"
83
+ model_name = f"Helsinki-NLP/opus-mt-{result_lang}-{target_lang}"
84
+ translator = pipeline(task_name, model=model_name, tokenizer=model_name)
85
+ translated = translator(message)[0]["translation_text"]
86
+ print(translated)
87
+ return translated
88
+
89
 
90
  def greet(name):
91
  return "Hello " + name + "!!"
92
 
93
 
94
+ iface = gr.ChatInterface(opus_trans)
95
  iface.launch()