OCR.Translate / app.py
richylyq's picture
test print list
59b200f
raw
history blame
7.6 kB
# OCR Translate v0.2
# 创建人:曾逸夫
# 创建时间:2022-07-19
import os
os.system("sudo apt-get install xclip")
import gradio as gr
import nltk
import pyclip
import pytesseract
from nltk.tokenize import sent_tokenize
from transformers import MarianMTModel, MarianTokenizer
from easynmt import EasyNMT
nltk.download("punkt")
OCR_TR_DESCRIPTION = """# OCR + Translate
<div id="content_align">OCR translation system based on Tesseract</div>"""
# image file path
img_dir = "./data"
# extract tesseract language list
choices = os.popen("tesseract --list-langs").read().split("\n")[1:-1]
# loading of m2m model via EasyNMT
m2m_model = EasyNMT("m2m_100_1.2B")
# translation model selection
def model_choice(src="en", trg="zh"):
# https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
# https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
model_name = f"Helsinki-NLP/opus-mt-{src}-{trg}" # 模型名称
tokenizer = MarianTokenizer.from_pretrained(model_name) # 分词器
model = MarianMTModel.from_pretrained(model_name) # 模型
return tokenizer, model
# tesseract language list to pytesseract language
def ocr_lang(lang_list):
lang_str = ""
lang_len = len(lang_list)
if lang_len == 1:
return lang_list[0]
else:
for i in range(lang_len):
lang_list.insert(lang_len - i, "+")
lang_str = "".join(lang_list[:-1])
return lang_str
# ocr tesseract
def ocr_tesseract(img, languages):
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
return ocr_str
# clear content
def clear_content():
return None
# copy to clipboard
def cp_text(input_text):
# sudo apt-get install xclip
try:
pyclip.copy(input_text)
except Exception as e:
print("sudo apt-get install xclip")
print(e)
# clear clipboard
def cp_clear():
pyclip.clear()
# translate
def translate(input_text, inputs_transStyle):
# reference:https://huggingface.co/docs/transformers/model_doc/marian
if input_text is None or input_text == "":
return "System prompt: There is no content to translate!"
# Choose Translation model
trans_src, trans_trg = (
inputs_transStyle.split("-")[0],
inputs_transStyle.split("-")[1],
)
# tokenizer, model = model_choice(trans_src, trans_trg)
translate_text = ""
input_text_list = input_text.split("\n\n")
translate_text_list_tmp = []
for i in range(len(input_text_list)):
if input_text_list[i] != "":
translate_text_list_tmp.append(input_text_list[i])
print("length of translate text list temp:")
print(len(translate_text_list_tmp))
print(translate_text_list_tmp)
for i in range(len(translate_text_list_tmp)):
tgt_text_sub = m2m_model.translate(translate_text_list_tmp[i], trans_trg)
# translated_sub = model.generate(
# **tokenizer(
# sent_tokenize(translate_text_list_tmp[i]),
# return_tensors="pt",
# truncation=True,
# padding=True,
# )
# )
# tgt_text_sub = [
# tokenizer.decode(t, skip_special_tokens=True) for t in translated_sub
# ]
translate_text_sub = "".join(tgt_text_sub)
translate_text = translate_text + "\n\n" + translate_text_sub
return translate_text[2:]
def main():
with gr.Blocks(css="style.css") as ocr_tr:
gr.Markdown(OCR_TR_DESCRIPTION)
# -------------- OCR text extraction --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 01: Text Extraction")
with gr.Row():
with gr.Column():
with gr.Row():
inputs_img = gr.Image(
image_mode="RGB", source="upload", type="pil", label="image"
)
with gr.Row():
inputs_lang = gr.CheckboxGroup(
choices=[
"chi_sim",
"chi_tra",
"eng",
"kor",
"msa",
"tha",
"vie",
],
type="value",
value=["eng"],
label="language",
)
with gr.Row():
clear_img_btn = gr.Button("Clear")
ocr_btn = gr.Button(value="OCR Extraction", variant="primary")
with gr.Column():
with gr.Row():
outputs_text = gr.Textbox(label="Extract content", lines=20)
with gr.Row():
inputs_transStyle = gr.Radio(
choices=[
"zh-en",
"en-zh",
"th-en",
"en-th",
"vi-en",
"en-vi",
"ko-en",
"en-ko",
"ja-en",
"en-ja",
],
type="value",
value="zh-en",
label="Translation Mode",
)
with gr.Row():
clear_text_btn = gr.Button("Clear")
translate_btn = gr.Button(value="Translate", variant="primary")
with gr.Row():
example_list = [
["./data/test.png", ["eng"]],
["./data/test02.png", ["eng"]],
["./data/test03.png", ["chi_sim"]],
]
gr.Examples(
example_list,
[inputs_img, inputs_lang],
outputs_text,
ocr_tesseract,
cache_examples=False,
)
# -------------- translation --------------
with gr.Box():
with gr.Row():
gr.Markdown("### Step 02: Translation")
with gr.Row():
outputs_tr_text = gr.Textbox(label="Translate Content", lines=20)
with gr.Row():
cp_clear_btn = gr.Button(value="Clear Clipboard")
cp_btn = gr.Button(value="Copy to clipboard", variant="primary")
# ---------------------- OCR Tesseract ----------------------
ocr_btn.click(
fn=ocr_tesseract,
inputs=[inputs_img, inputs_lang],
outputs=[
outputs_text,
],
)
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])
# ---------------------- translate ----------------------
translate_btn.click(
fn=translate,
inputs=[outputs_text, inputs_transStyle],
outputs=[outputs_tr_text],
)
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])
# ---------------------- clipboard ----------------------
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
ocr_tr.launch(inbrowser=True)
if __name__ == "__main__":
main()