Commit
Β·
d9f22f5
1
Parent(s):
e64095c
Update
Browse files- app-ngrok.py +4 -4
- test.py +48 -26
app-ngrok.py
CHANGED
@@ -126,18 +126,18 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
126 |
note = gr.HTML("""<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate</p>""")
|
127 |
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
128 |
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
|
|
|
|
|
|
|
|
129 |
|
130 |
with gr.Accordion("Options", open=False):
|
131 |
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
|
132 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
133 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
134 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
135 |
-
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
|
136 |
stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence')
|
137 |
|
138 |
-
# Generate button UI element
|
139 |
-
run_button = gr.Button("Generate SQL", variant="primary")
|
140 |
-
|
141 |
## Add statement saying that inputs/outpus are sent to firebase
|
142 |
info = gr.HTML(f"""
|
143 |
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
|
|
126 |
note = gr.HTML("""<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate</p>""")
|
127 |
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
128 |
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
129 |
+
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
|
130 |
+
|
131 |
+
# Generate button UI element
|
132 |
+
run_button = gr.Button("Generate SQL", variant="primary")
|
133 |
|
134 |
with gr.Accordion("Options", open=False):
|
135 |
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
|
136 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
137 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
138 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
|
|
139 |
stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence')
|
140 |
|
|
|
|
|
|
|
141 |
## Add statement saying that inputs/outpus are sent to firebase
|
142 |
info = gr.HTML(f"""
|
143 |
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
test.py
CHANGED
@@ -1,52 +1,74 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08):
|
4 |
# For the stripped down version, let's just return a preset output
|
5 |
final_query = "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"
|
6 |
final_query_markdown = f"{final_query}"
|
7 |
return final_query_markdown
|
8 |
|
|
|
9 |
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
10 |
header = gr.HTML("""
|
11 |
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
12 |
-
<h3 style="text-align: center"
|
13 |
""")
|
14 |
|
15 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
|
|
16 |
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
17 |
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
with gr.Accordion("
|
20 |
-
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.
|
21 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
22 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
23 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
24 |
-
|
25 |
-
run_button = gr.Button("Generate SQL", variant="primary")
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
examples = gr.Examples([
|
29 |
-
["What is the average
|
|
|
|
|
30 |
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
31 |
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
32 |
-
["
|
33 |
-
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
38 |
-
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
39 |
-
finetuned_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
40 |
-
dataset = "richardr1126/spider-skeleton-context-instruct"
|
41 |
-
|
42 |
-
footer = gr.HTML(f"""
|
43 |
-
<p>π οΈ If you want you can <strong>duplicate this Space</strong>, then change the HF_MODEL_REPO spaces env varaible to use any Transformers model.</p>
|
44 |
-
<p>π Leveraging the <a href='https://huggingface.co/{bitsandbytes_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
45 |
-
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{finetuned_model}'><strong>{finetuned_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
46 |
-
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{finetuned_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
47 |
-
""")
|
48 |
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
demo.queue(concurrency_count=1, max_size=
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, stop_sequence="Explanation,Note", log=True):
|
4 |
# For the stripped down version, let's just return a preset output
|
5 |
final_query = "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"
|
6 |
final_query_markdown = f"{final_query}"
|
7 |
return final_query_markdown
|
8 |
|
9 |
+
# Gradio UI Code
|
10 |
with gr.Blocks(theme='gradio/soft') as demo:
|
11 |
+
# Elements stack vertically by default just define elements in order you want them to stack
|
12 |
header = gr.HTML("""
|
13 |
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
14 |
+
<h3 style="text-align: center">π·οΈβ οΈπ§ββοΈ Generate SQL queries from Natural Language π·οΈβ οΈπ§ββοΈ</h3>
|
15 |
""")
|
16 |
|
17 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
18 |
+
note = gr.HTML("""<p style="font-size: 12px; text-align: center">β οΈ Should take 30-60s to generate</p>""")
|
19 |
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
20 |
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
21 |
+
format_sql = gr.Checkbox(label="Format SQL + Remove Skeleton", value=True, interactive=True)
|
22 |
+
|
23 |
+
# Generate button UI element
|
24 |
+
run_button = gr.Button("Generate SQL", variant="primary")
|
25 |
|
26 |
+
with gr.Accordion("Options", open=False):
|
27 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.2, step=0.1)
|
28 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
29 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
30 |
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
31 |
+
stop_sequence = gr.Textbox(lines=1, value="Explanation,Note", label='Extra Stop Sequence')
|
|
|
32 |
|
33 |
+
## Add statement saying that inputs/outpus are sent to firebase
|
34 |
+
info = gr.HTML(f"""
|
35 |
+
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
36 |
+
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
37 |
+
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
38 |
+
<p>π All inputs/outputs are logged to Firebase to see how the model is doing.</a></p>
|
39 |
+
""")
|
40 |
+
|
41 |
+
examples = gr.Examples([
|
42 |
+
["What is the average, minimum, and maximum age of all singers from France?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
43 |
+
["How many students have dogs?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid | pets.pettype = 'Dog' |"],
|
44 |
+
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=generate, cache_examples=False if platform.system() == "Windows" or platform.system() == "Darwin" else True, outputs=output_box)
|
45 |
+
|
46 |
+
with gr.Accordion("More Examples", open=False):
|
47 |
examples = gr.Examples([
|
48 |
+
["What is the average weight of pets of all students?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
49 |
+
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
50 |
+
["For students who have pets, how many pets does each student have? List their ids instead of names.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
51 |
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
52 |
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
53 |
+
["Which student has the oldest pet?", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
54 |
+
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
55 |
+
["List all students who don't have pets.", "| student : stuid , lname , fname , age , sex , major , advisor , city_code | has_pet : stuid , petid | pets : petid , pettype , pet_age , weight | has_pet.stuid = student.stuid | has_pet.petid = pets.petid |"],
|
56 |
+
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], fn=bot, cache_examples=False, outputs=output_box)
|
57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
readme_content = requests.get(f"https://huggingface.co/{merged_model}/raw/main/README.md").text
|
60 |
+
readme_content = re.sub('---.*?---', '', readme_content, flags=re.DOTALL) #Remove YAML front matter
|
61 |
|
62 |
+
with gr.Accordion("π Model Readme", open=True):
|
63 |
+
readme = gr.Markdown(
|
64 |
+
readme_content,
|
65 |
+
)
|
66 |
+
|
67 |
+
with gr.Accordion("More Options:", open=False):
|
68 |
+
log = gr.Checkbox(label="Log to Firebase", value=True, interactive=True)
|
69 |
+
|
70 |
+
# When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
|
71 |
+
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence, log], outputs=output_box, api_name="txt2sql")
|
72 |
+
|
73 |
|
74 |
+
demo.queue(concurrency_count=1, max_size=20).launch(debug=True)
|