richardr1126
commited on
Commit
β’
664c783
1
Parent(s):
de09581
Add firebase logging
Browse files- .gitignore +1 -1
- app-ngrok.py +46 -3
- requirements.txt +2 -1
.gitignore
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
venv/
|
2 |
.venv/
|
3 |
env/
|
4 |
-
.env
|
|
|
1 |
venv/
|
2 |
.venv/
|
3 |
env/
|
4 |
+
.env
|
app-ngrok.py
CHANGED
@@ -5,15 +5,49 @@ import requests
|
|
5 |
from time import sleep
|
6 |
import re
|
7 |
import platform
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
print(f"Running on {platform.system()}")
|
10 |
|
|
|
|
|
|
|
|
|
11 |
quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
|
12 |
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
13 |
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
14 |
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
15 |
dataset = "richardr1126/spider-skeleton-context-instruct"
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def format(text):
|
18 |
# Split the text by "|", and get the last element in the list which should be the final query
|
19 |
try:
|
@@ -33,7 +67,9 @@ def format(text):
|
|
33 |
|
34 |
return final_query_markdown
|
35 |
|
36 |
-
|
|
|
|
|
37 |
# Format the user's input message
|
38 |
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
|
39 |
|
@@ -66,10 +102,15 @@ def generate(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0
|
|
66 |
if response_text and response_text[-1] == ".":
|
67 |
response_text = response_text[:-1]
|
68 |
|
|
|
|
|
|
|
|
|
69 |
if format_sql:
|
70 |
-
return
|
71 |
else:
|
72 |
return response_text
|
|
|
73 |
|
74 |
except Exception as e:
|
75 |
print(f'Error occurred: {str(e)}')
|
@@ -102,10 +143,12 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
102 |
# When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
|
103 |
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], outputs=output_box, api_name="txt2sql")
|
104 |
|
|
|
105 |
info = gr.HTML(f"""
|
106 |
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
107 |
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
108 |
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
|
|
109 |
""")
|
110 |
|
111 |
with gr.Accordion("Examples", open=True):
|
@@ -135,4 +178,4 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
135 |
readme_content,
|
136 |
)
|
137 |
|
138 |
-
demo.queue(concurrency_count=1, max_size=
|
|
|
5 |
from time import sleep
|
6 |
import re
|
7 |
import platform
|
8 |
+
# Additional Firebase imports
|
9 |
+
import firebase_admin
|
10 |
+
from firebase_admin import credentials, firestore
|
11 |
+
import json
|
12 |
+
import base64
|
13 |
|
14 |
print(f"Running on {platform.system()}")
|
15 |
|
16 |
+
if platform.system() == "Windows" or platform.system() == "Darwin":
|
17 |
+
from dotenv import load_dotenv
|
18 |
+
load_dotenv()
|
19 |
+
|
20 |
quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
|
21 |
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
22 |
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
23 |
lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
24 |
dataset = "richardr1126/spider-skeleton-context-instruct"
|
25 |
|
26 |
+
def log_to_firestore(input_message, db_info, temperature, response_text):
|
27 |
+
# For firebase
|
28 |
+
base64_string = os.getenv('FIREBASE')
|
29 |
+
base64_bytes = base64_string.encode('utf-8')
|
30 |
+
json_bytes = base64.b64decode(base64_bytes)
|
31 |
+
json_data = json_bytes.decode('utf-8')
|
32 |
+
|
33 |
+
firebase_auth = json.loads(json_data)
|
34 |
+
|
35 |
+
# Load credentials and initialize Firestore
|
36 |
+
cred = credentials.Certificate(firebase_auth)
|
37 |
+
firebase_admin.initialize_app(cred)
|
38 |
+
db = firestore.client()
|
39 |
+
|
40 |
+
doc_ref = db.collection('logs').document()
|
41 |
+
log_data = {
|
42 |
+
'timestamp': firestore.SERVER_TIMESTAMP,
|
43 |
+
'temperature': temperature,
|
44 |
+
'db_info': db_info,
|
45 |
+
'input': input_message,
|
46 |
+
'output': response_text
|
47 |
+
}
|
48 |
+
doc_ref.set(log_data)
|
49 |
+
|
50 |
+
|
51 |
def format(text):
|
52 |
# Split the text by "|", and get the last element in the list which should be the final query
|
53 |
try:
|
|
|
67 |
|
68 |
return final_query_markdown
|
69 |
|
70 |
+
|
71 |
+
|
72 |
+
def generate(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08, format_sql=True, stop_sequence="###", log=False):
|
73 |
# Format the user's input message
|
74 |
messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
|
75 |
|
|
|
102 |
if response_text and response_text[-1] == ".":
|
103 |
response_text = response_text[:-1]
|
104 |
|
105 |
+
# Log the request to Firestore
|
106 |
+
formatted_query = format(response_text)
|
107 |
+
log_to_firestore(input_message, db_info, temperature, formatted_query if format_sql else response_text)
|
108 |
+
|
109 |
if format_sql:
|
110 |
+
return formatted_query
|
111 |
else:
|
112 |
return response_text
|
113 |
+
|
114 |
|
115 |
except Exception as e:
|
116 |
print(f'Error occurred: {str(e)}')
|
|
|
143 |
# When the button is clicked, call the generate function, inputs are taken from the UI elements, outputs are sent to outputs elements
|
144 |
run_button.click(fn=generate, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty, format_sql, stop_sequence], outputs=output_box, api_name="txt2sql")
|
145 |
|
146 |
+
## Add statement saying that inputs/outpus are sent to firebase
|
147 |
info = gr.HTML(f"""
|
148 |
<p>π Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
149 |
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
150 |
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
151 |
+
<p>π All inputs/outputs are logged to Firebase, to help me see where the model still needs improvements.</a>.</p>
|
152 |
""")
|
153 |
|
154 |
with gr.Accordion("Examples", open=True):
|
|
|
178 |
readme_content,
|
179 |
)
|
180 |
|
181 |
+
demo.queue(concurrency_count=1, max_size=20).launch(debug=True)
|
requirements.txt
CHANGED
@@ -7,4 +7,5 @@ bitsandbytes
|
|
7 |
scipy
|
8 |
transformers
|
9 |
accelerate
|
10 |
-
sqlparse
|
|
|
|
7 |
scipy
|
8 |
transformers
|
9 |
accelerate
|
10 |
+
sqlparse
|
11 |
+
firebase_admin
|