richardr1126
commited on
Commit
β’
2ea5c26
1
Parent(s):
9ae4caa
Added Space description
Browse files
app.py
CHANGED
@@ -91,30 +91,46 @@ def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, rep
|
|
91 |
return final_query_markdown
|
92 |
|
93 |
with gr.Blocks(theme='gradio/soft') as demo:
|
94 |
-
|
95 |
-
|
|
|
96 |
""")
|
97 |
|
98 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
99 |
-
input_text = gr.Textbox(lines=3, placeholder='
|
100 |
-
db_info = gr.Textbox(lines=
|
101 |
|
102 |
with gr.Accordion("Hyperparameters", open=False):
|
103 |
-
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.
|
104 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
105 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
106 |
-
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.
|
107 |
|
108 |
run_button = gr.Button("Generate SQL", variant="primary")
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
|
119 |
|
120 |
-
demo.launch()
|
|
|
91 |
return final_query_markdown
|
92 |
|
93 |
with gr.Blocks(theme='gradio/soft') as demo:
|
94 |
+
header = gr.HTML("""
|
95 |
+
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
96 |
+
<h3 style="text-align: center">π§ββοΈ Generate SQL queries from Natural Language π§ββοΈ</h3>
|
97 |
""")
|
98 |
|
99 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
100 |
+
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
101 |
+
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
102 |
|
103 |
with gr.Accordion("Hyperparameters", open=False):
|
104 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
105 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
106 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
107 |
+
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
108 |
|
109 |
run_button = gr.Button("Generate SQL", variant="primary")
|
110 |
|
111 |
+
with gr.Accordion("Examples", open=True):
|
112 |
+
examples = gr.Examples([
|
113 |
+
["What is the average, minimum, and maximum age for all French singers?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
114 |
+
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
115 |
+
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
116 |
+
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
117 |
+
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
|
118 |
+
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], fn=bot)
|
119 |
+
|
120 |
+
bitsandbytes_model = "richardr1126/spider-skeleton-wizard-coder-8bit"
|
121 |
+
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
122 |
+
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
123 |
+
finetuned_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
124 |
+
dataset = "richardr1126/spider-skeleton-context-instruct"
|
125 |
+
|
126 |
+
footer = gr.HTML(f"""
|
127 |
+
<p>π οΈ If you want you can <strong>duplicate this Space</strong>, then change the HF_MODEL_REPO spaces env varaible to use any Transformers model.</p>
|
128 |
+
<p>π Leveraging the <a href='https://huggingface.co/{bitsandbytes_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
129 |
+
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{finetuned_model}'><strong>{finetuned_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
130 |
+
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{finetuned_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
131 |
+
""")
|
132 |
+
|
133 |
|
134 |
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
|
135 |
|
136 |
+
demo.queue(concurrency_count=1, max_size=10).launch()
|
test.py
CHANGED
@@ -7,30 +7,46 @@ def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, rep
|
|
7 |
return final_query_markdown
|
8 |
|
9 |
with gr.Blocks(theme='gradio/soft') as demo:
|
10 |
-
|
11 |
-
|
|
|
12 |
""")
|
13 |
|
14 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
15 |
-
input_text = gr.Textbox(lines=3, placeholder='
|
16 |
-
db_info = gr.Textbox(lines=
|
17 |
|
18 |
with gr.Accordion("Hyperparameters", open=False):
|
19 |
-
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.
|
20 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
21 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
22 |
-
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.
|
23 |
|
24 |
run_button = gr.Button("Generate SQL", variant="primary")
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
|
35 |
|
36 |
-
demo.launch()
|
|
|
7 |
return final_query_markdown
|
8 |
|
9 |
with gr.Blocks(theme='gradio/soft') as demo:
|
10 |
+
header = gr.HTML("""
|
11 |
+
<h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
|
12 |
+
<h3 style="text-align: center">π§ββοΈ Generate SQL queries from Natural Language π§ββοΈ</h3>
|
13 |
""")
|
14 |
|
15 |
output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
|
16 |
+
input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
|
17 |
+
db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
|
18 |
|
19 |
with gr.Accordion("Hyperparameters", open=False):
|
20 |
+
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
|
21 |
top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
|
22 |
top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
|
23 |
+
repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
|
24 |
|
25 |
run_button = gr.Button("Generate SQL", variant="primary")
|
26 |
|
27 |
+
with gr.Accordion("Examples", open=True):
|
28 |
+
examples = gr.Examples([
|
29 |
+
["What is the average, minimum, and maximum age for all French singers?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
30 |
+
["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
31 |
+
["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
32 |
+
["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
|
33 |
+
["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
|
34 |
+
], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], fn=bot)
|
35 |
+
|
36 |
+
bitsandbytes_model = "richardr1126/spider-skeleton-wizard-coder-8bit"
|
37 |
+
merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
|
38 |
+
initial_model = "WizardLM/WizardCoder-15B-V1.0"
|
39 |
+
finetuned_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
|
40 |
+
dataset = "richardr1126/spider-skeleton-context-instruct"
|
41 |
+
|
42 |
+
footer = gr.HTML(f"""
|
43 |
+
<p>π οΈ If you want you can <strong>duplicate this Space</strong>, then change the HF_MODEL_REPO spaces env varaible to use any Transformers model.</p>
|
44 |
+
<p>π Leveraging the <a href='https://huggingface.co/{bitsandbytes_model}'><strong>bitsandbytes 8-bit version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
|
45 |
+
<p>π How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{finetuned_model}'><strong>{finetuned_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
|
46 |
+
<p>π Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{finetuned_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
|
47 |
+
""")
|
48 |
+
|
49 |
|
50 |
run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
|
51 |
|
52 |
+
demo.queue(concurrency_count=1, max_size=10).launch()
|