richardr1126 commited on
Commit
1e3f569
Β·
1 Parent(s): 7a8a034

Use my hosted API

Browse files
Files changed (2) hide show
  1. README.md +1 -1
  2. app-kobold.py +105 -0
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: gray
5
  colorTo: purple
6
  sdk: gradio
7
  sdk_version: 3.37.0
8
- app_file: app.py
9
  pinned: true
10
  duplicated_from: richardr1126/natsql-wizardcoder-demo
11
  license: bigcode-openrail-m
 
5
  colorTo: purple
6
  sdk: gradio
7
  sdk_version: 3.37.0
8
+ app_file: app-kobold.py
9
  pinned: true
10
  duplicated_from: richardr1126/natsql-wizardcoder-demo
11
  license: bigcode-openrail-m
app-kobold.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ import sqlparse
4
+ import requests
5
+ from time import sleep
6
+
7
+ def format(text):
8
+ # Split the text by "|", and get the last element in the list which should be the final query
9
+ try:
10
+ final_query = text.split("|")[1].strip()
11
+ except Exception:
12
+ final_query = text
13
+
14
+ try:
15
+ # Attempt to format SQL query using sqlparse
16
+ formatted_query = sqlparse.format(final_query, reindent=True, keyword_case='upper')
17
+ except Exception:
18
+ # If formatting fails, use the original, unformatted query
19
+ formatted_query = final_query
20
+
21
+ # Convert SQL to markdown (not required, but just to show how to use the markdown module)
22
+ final_query_markdown = f"{formatted_query}"
23
+
24
+ return final_query_markdown
25
+
26
+
27
+ def bot(input_message: str, db_info="", temperature=0.1, top_p=0.9, top_k=0, repetition_penalty=1.08):
28
+ # Format the user's input message
29
+ messages = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n\n### Instruction:\n\nConvert text to sql: {input_message} {db_info}\n\n### Response:\n\n"
30
+
31
+ url = "https://https://e9f4be879d38-8269039109365193683.ngrok-free.app/api/v1/generate"
32
+ payload = {
33
+ "prompt": messages,
34
+ "temperature": temperature,
35
+ "top_p": top_p,
36
+ "top_k": top_k,
37
+ "top_a": 0,
38
+ "n": 1,
39
+ "max_context_length": 2048,
40
+ "max_length": 512,
41
+ "rep_pen": repetition_penalty,
42
+ "sampler_order": [6,0,1,3,4,2,5],
43
+ "stop_sequence": ["###", "Result"],
44
+ }
45
+ headers = {"Content-Type": "application/json"}
46
+
47
+ for _ in range(3):
48
+ try:
49
+ response = requests.post(url, json=payload, headers=headers)
50
+ response_text = response.json()["results"][0]["text"]
51
+ response_text = response_text.replace("\n", "").replace("\t", " ")
52
+ if response_text and response_text[-1] == ".":
53
+ response_text = response_text[:-1]
54
+
55
+ return format(response_text)
56
+
57
+ except Exception as e:
58
+ print(f'Error occurred: {str(e)}')
59
+ print('Waiting for 10 seconds before retrying...')
60
+ sleep(10)
61
+
62
+ with gr.Blocks(theme='gradio/soft') as demo:
63
+ header = gr.HTML("""
64
+ <h1 style="text-align: center">SQL Skeleton WizardCoder Demo</h1>
65
+ <h3 style="text-align: center">πŸ§™β€β™‚οΈ Generate SQL queries from Natural Language πŸ§™β€β™‚οΈ</h3>
66
+ """)
67
+
68
+ output_box = gr.Code(label="Generated SQL", lines=2, interactive=True)
69
+ input_text = gr.Textbox(lines=3, placeholder='Write your question here...', label='NL Input')
70
+ db_info = gr.Textbox(lines=4, placeholder='Example: | table_01 : column_01 , column_02 | table_02 : column_01 , column_02 | ...', label='Database Info')
71
+
72
+ with gr.Accordion("Hyperparameters", open=False):
73
+ temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
74
+ top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.0, maximum=1.0, value=0.9, step=0.01)
75
+ top_k = gr.Slider(label="Top-k", minimum=0, maximum=200, value=0, step=1)
76
+ repetition_penalty = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.08, step=0.01)
77
+
78
+ run_button = gr.Button("Generate SQL", variant="primary")
79
+
80
+ with gr.Accordion("Examples", open=True):
81
+ examples = gr.Examples([
82
+ ["What is the average, minimum, and maximum age for all French singers?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
83
+ ["Show location and name for all stadiums with a capacity between 5000 and 10000.", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
84
+ ["What are the number of concerts that occurred in the stadium with the largest capacity ?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
85
+ ["How many male singers performed in concerts in the year 2023?", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"],
86
+ ["List the names of all singers who performed in a concert with the theme 'Rock'", "| stadium : stadium_id , location , name , capacity , highest , lowest , average | singer : singer_id , name , country , song_name , song_release_year , age , is_male | concert : concert_id , concert_name , theme , stadium_id , year | singer_in_concert : concert_id , singer_id | concert.stadium_id = stadium.stadium_id | singer_in_concert.singer_id = singer.singer_id | singer_in_concert.concert_id = concert.concert_id |"]
87
+ ], inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], fn=bot)
88
+
89
+ quantized_model = "richardr1126/spider-skeleton-wizard-coder-ggml"
90
+ merged_model = "richardr1126/spider-skeleton-wizard-coder-merged"
91
+ initial_model = "WizardLM/WizardCoder-15B-V1.0"
92
+ lora_model = "richardr1126/spider-skeleton-wizard-coder-qlora"
93
+ dataset = "richardr1126/spider-skeleton-context-instruct"
94
+
95
+ footer = gr.HTML(f"""
96
+ <p>πŸ› οΈ If you want you can <strong>duplicate this Space</strong>, then change the HF_MODEL_REPO spaces env varaible to use any GGML model.</p>
97
+ <p>🌐 Leveraging the <a href='https://huggingface.co/{quantized_model}'><strong>4-bit GGML version</strong></a> of <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a> model.</p>
98
+ <p>πŸ”— How it's made: <a href='https://huggingface.co/{initial_model}'><strong>{initial_model}</strong></a> was finetuned to create <a href='https://huggingface.co/{lora_model}'><strong>{lora_model}</strong></a>, then merged together to create <a href='https://huggingface.co/{merged_model}'><strong>{merged_model}</strong></a>.</p>
99
+ <p>πŸ“‰ Fine-tuning was performed using QLoRA techniques on the <a href='https://huggingface.co/datasets/{dataset}'><strong>{dataset}</strong></a> dataset. You can view training metrics on the <a href='https://huggingface.co/{lora_model}'><strong>QLoRa adapter HF Repo</strong></a>.</p>
100
+ """)
101
+
102
+
103
+ run_button.click(fn=bot, inputs=[input_text, db_info, temperature, top_p, top_k, repetition_penalty], outputs=output_box, api_name="txt2sql")
104
+
105
+ demo.queue(concurrency_count=1, max_size=10).launch(debug=True)