|
|
import gradio as gr |
|
|
import torch |
|
|
from transformers import AutoTokenizer |
|
|
from peft import AutoPeftModelForCausalLM |
|
|
|
|
|
|
|
|
model_name = "richardcsuwandi/llama2-javanese" |
|
|
model = AutoPeftModelForCausalLM.from_pretrained(model_name, device_map='cpu', offload_folder='./', torch_dtype=torch.bfloat16) |
|
|
|
|
|
|
|
|
model = model.merge_and_unload() |
|
|
model.eval() |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
tokenizer.pad_token_id = 0 |
|
|
tokenizer.padding_side = "left" |
|
|
|
|
|
def respond( |
|
|
message, |
|
|
history: list[tuple[str, str]], |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p, |
|
|
): |
|
|
|
|
|
input_text = f"<s>[INST] <<SYS>> {system_message} <</SYS>> {message} [/INST]" |
|
|
|
|
|
|
|
|
inputs = tokenizer(input_text, return_tensors="pt").to(model.device) |
|
|
|
|
|
|
|
|
output_sequences = model.generate( |
|
|
input_ids=inputs['input_ids'], |
|
|
max_length=max_tokens, |
|
|
repetition_penalty=1.2 |
|
|
) |
|
|
|
|
|
|
|
|
input_length = inputs['input_ids'].shape[1] |
|
|
generated_text = tokenizer.decode(output_sequences[0][input_length:], skip_special_tokens=True) |
|
|
|
|
|
return generated_text |
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="Sampeyan minangka chatbot umum sing tansah mangsuli nganggo basa Jawa.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max tokens"), |
|
|
], |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch(share=True) |