riccorl's picture
Update app
fb04667
raw
history blame
9.15 kB
import os
import re
import time
from pathlib import Path
import requests
import streamlit as st
from spacy import displacy
from streamlit_extras.badges import badge
from streamlit_extras.stylable_container import stylable_container
# RELIK = os.getenv("RELIK", "localhost:8000/api/entities")
import random
from relik.inference.annotator import Relik
def get_random_color(ents):
colors = {}
random_colors = generate_pastel_colors(len(ents))
for ent in ents:
colors[ent] = random_colors.pop(random.randint(0, len(random_colors) - 1))
return colors
def floatrange(start, stop, steps):
if int(steps) == 1:
return [stop]
return [
start + float(i) * (stop - start) / (float(steps) - 1) for i in range(steps)
]
def hsl_to_rgb(h, s, l):
def hue_2_rgb(v1, v2, v_h):
while v_h < 0.0:
v_h += 1.0
while v_h > 1.0:
v_h -= 1.0
if 6 * v_h < 1.0:
return v1 + (v2 - v1) * 6.0 * v_h
if 2 * v_h < 1.0:
return v2
if 3 * v_h < 2.0:
return v1 + (v2 - v1) * ((2.0 / 3.0) - v_h) * 6.0
return v1
# if not (0 <= s <= 1): raise ValueError, "s (saturation) parameter must be between 0 and 1."
# if not (0 <= l <= 1): raise ValueError, "l (lightness) parameter must be between 0 and 1."
r, b, g = (l * 255,) * 3
if s != 0.0:
if l < 0.5:
var_2 = l * (1.0 + s)
else:
var_2 = (l + s) - (s * l)
var_1 = 2.0 * l - var_2
r = 255 * hue_2_rgb(var_1, var_2, h + (1.0 / 3.0))
g = 255 * hue_2_rgb(var_1, var_2, h)
b = 255 * hue_2_rgb(var_1, var_2, h - (1.0 / 3.0))
return int(round(r)), int(round(g)), int(round(b))
def generate_pastel_colors(n):
"""Return different pastel colours.
Input:
n (integer) : The number of colors to return
Output:
A list of colors in HTML notation (eg.['#cce0ff', '#ffcccc', '#ccffe0', '#f5ccff', '#f5ffcc'])
Example:
>>> print generate_pastel_colors(5)
['#cce0ff', '#f5ccff', '#ffcccc', '#f5ffcc', '#ccffe0']
"""
if n == 0:
return []
# To generate colors, we use the HSL colorspace (see http://en.wikipedia.org/wiki/HSL_color_space)
start_hue = 0.6 # 0=red 1/3=0.333=green 2/3=0.666=blue
saturation = 1.0
lightness = 0.8
# We take points around the chromatic circle (hue):
# (Note: we generate n+1 colors, then drop the last one ([:-1]) because
# it equals the first one (hue 0 = hue 1))
return [
"#%02x%02x%02x" % hsl_to_rgb(hue, saturation, lightness)
for hue in floatrange(start_hue, start_hue + 1, n + 1)
][:-1]
def set_sidebar(css):
white_link_wrapper = "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='{}'>{}</a>"
with st.sidebar:
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True)
st.image(
"http://nlp.uniroma1.it/static/website/sapienza-nlp-logo-wh.svg",
use_column_width=True,
)
st.markdown("## ReLiK")
st.write(
f"""
- {white_link_wrapper.format("#", "<i class='fa-solid fa-file'></i>&nbsp; Paper")}
- {white_link_wrapper.format("https://github.com/SapienzaNLP/relik", "<i class='fa-brands fa-github'></i>&nbsp; GitHub")}
- {white_link_wrapper.format("https://hub.docker.com/repository/docker/sapienzanlp/relik", "<i class='fa-brands fa-docker'></i>&nbsp; Docker Hub")}
""",
unsafe_allow_html=True,
)
st.markdown("## Sapienza NLP")
st.write(
f"""
- {white_link_wrapper.format("https://nlp.uniroma1.it", "<i class='fa-solid fa-globe'></i>&nbsp; Webpage")}
- {white_link_wrapper.format("https://github.com/SapienzaNLP", "<i class='fa-brands fa-github'></i>&nbsp; GitHub")}
- {white_link_wrapper.format("https://twitter.com/SapienzaNLP", "<i class='fa-brands fa-twitter'></i>&nbsp; Twitter")}
- {white_link_wrapper.format("https://www.linkedin.com/company/79434450", "<i class='fa-brands fa-linkedin'></i>&nbsp; LinkedIn")}
""",
unsafe_allow_html=True,
)
def get_el_annotations(response):
# swap labels key with ents
ents = [{"start": l.start, "end": l.end, "label": l.label} for l in response.labels]
dict_of_ents = {"text": response.text, "ents": ents}
label_in_text = set(l["label"] for l in dict_of_ents["ents"])
options = {"ents": label_in_text, "colors": get_random_color(label_in_text)}
return dict_of_ents, options
@st.cache_resource()
def load_model():
return Relik(
question_encoder="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder",
document_index="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered",
reader="/home/user/app/models/relik-reader-aida-deberta-small",
top_k=100,
window_size=32,
window_stride=16,
candidates_preprocessing_fn="relik.inference.preprocessing.wikipedia_title_and_openings_preprocessing",
)
def set_intro(css):
# intro
st.markdown("# ReLik")
st.markdown(
"### Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget"
)
# st.markdown(
# "This is a front-end for the paper [Universal Semantic Annotator: the First Unified API "
# "for WSD, SRL and Semantic Parsing](https://www.researchgate.net/publication/360671045_Universal_Semantic_Annotator_the_First_Unified_API_for_WSD_SRL_and_Semantic_Parsing), which will be presented at LREC 2022 by "
# "[Riccardo Orlando](https://riccorl.github.io), [Simone Conia](https://c-simone.github.io/), "
# "[Stefano Faralli](https://corsidilaurea.uniroma1.it/it/users/stefanofaralliuniroma1it), and [Roberto Navigli](https://www.diag.uniroma1.it/navigli/)."
# )
badge(type="github", name="sapienzanlp/relik")
badge(type="pypi", name="relik")
def run_client():
with open(Path(__file__).parent / "style.css") as f:
css = f.read()
st.set_page_config(
page_title="ReLik",
page_icon="🦮",
layout="wide",
)
set_sidebar(css)
set_intro(css)
# text input
text = st.text_area(
"Enter Text Below:",
value="Michael Jordan was one of the best players in the NBA.",
height=200,
max_chars=1500,
)
with stylable_container(
key="annotate_button",
css_styles="""
button {
background-color: #802433;
color: white;
border-radius: 25px;
}
""",
):
submit = st.button("Annotate")
# submit = st.button("Run")
if "relik_model" not in st.session_state.keys():
st.session_state["relik_model"] = load_model()
relik_model = st.session_state["relik_model"]
# ReLik API call
if submit:
text = text.strip()
if text:
st.markdown("####")
st.markdown("#### Entity Linking")
with st.spinner(text="In progress"):
response = relik_model(text)
# response = requests.post(RELIK, json=text)
# if response.status_code != 200:
# st.error("Error: {}".format(response.status_code))
# else:
# response = response.json()
# Entity Linking
# with stylable_container(
# key="container_with_border",
# css_styles="""
# {
# border: 1px solid rgba(49, 51, 63, 0.2);
# border-radius: 0.5rem;
# padding: 0.5rem;
# padding-bottom: 2rem;
# }
# """,
# ):
# st.markdown("##")
dict_of_ents, options = get_el_annotations(response=response)
display = displacy.render(
dict_of_ents, manual=True, style="ent", options=options
)
display = display.replace("\n", " ")
# wsd_display = re.sub(
# r"(wiki::\d+\w)",
# r"<a href='https://babelnet.org/synset?id=\g<1>&orig=\g<1>&lang={}'>\g<1></a>".format(
# language.upper()
# ),
# wsd_display,
# )
with st.container():
st.write(display, unsafe_allow_html=True)
st.markdown("####")
st.markdown("#### Relation Extraction")
with st.container():
st.write("Coming :)", unsafe_allow_html=True)
else:
st.error("Please enter some text.")
if __name__ == "__main__":
run_client()