Spaces:
Sleeping
Sleeping
import os | |
import re | |
import time | |
from pathlib import Path | |
import requests | |
import streamlit as st | |
from spacy import displacy | |
from streamlit_extras.badges import badge | |
from streamlit_extras.stylable_container import stylable_container | |
# RELIK = os.getenv("RELIK", "localhost:8000/api/entities") | |
import random | |
from relik.inference.annotator import Relik | |
def get_random_color(ents): | |
colors = {} | |
random_colors = generate_pastel_colors(len(ents)) | |
for ent in ents: | |
colors[ent] = random_colors.pop(random.randint(0, len(random_colors) - 1)) | |
return colors | |
def floatrange(start, stop, steps): | |
if int(steps) == 1: | |
return [stop] | |
return [ | |
start + float(i) * (stop - start) / (float(steps) - 1) for i in range(steps) | |
] | |
def hsl_to_rgb(h, s, l): | |
def hue_2_rgb(v1, v2, v_h): | |
while v_h < 0.0: | |
v_h += 1.0 | |
while v_h > 1.0: | |
v_h -= 1.0 | |
if 6 * v_h < 1.0: | |
return v1 + (v2 - v1) * 6.0 * v_h | |
if 2 * v_h < 1.0: | |
return v2 | |
if 3 * v_h < 2.0: | |
return v1 + (v2 - v1) * ((2.0 / 3.0) - v_h) * 6.0 | |
return v1 | |
# if not (0 <= s <= 1): raise ValueError, "s (saturation) parameter must be between 0 and 1." | |
# if not (0 <= l <= 1): raise ValueError, "l (lightness) parameter must be between 0 and 1." | |
r, b, g = (l * 255,) * 3 | |
if s != 0.0: | |
if l < 0.5: | |
var_2 = l * (1.0 + s) | |
else: | |
var_2 = (l + s) - (s * l) | |
var_1 = 2.0 * l - var_2 | |
r = 255 * hue_2_rgb(var_1, var_2, h + (1.0 / 3.0)) | |
g = 255 * hue_2_rgb(var_1, var_2, h) | |
b = 255 * hue_2_rgb(var_1, var_2, h - (1.0 / 3.0)) | |
return int(round(r)), int(round(g)), int(round(b)) | |
def generate_pastel_colors(n): | |
"""Return different pastel colours. | |
Input: | |
n (integer) : The number of colors to return | |
Output: | |
A list of colors in HTML notation (eg.['#cce0ff', '#ffcccc', '#ccffe0', '#f5ccff', '#f5ffcc']) | |
Example: | |
>>> print generate_pastel_colors(5) | |
['#cce0ff', '#f5ccff', '#ffcccc', '#f5ffcc', '#ccffe0'] | |
""" | |
if n == 0: | |
return [] | |
# To generate colors, we use the HSL colorspace (see http://en.wikipedia.org/wiki/HSL_color_space) | |
start_hue = 0.6 # 0=red 1/3=0.333=green 2/3=0.666=blue | |
saturation = 1.0 | |
lightness = 0.8 | |
# We take points around the chromatic circle (hue): | |
# (Note: we generate n+1 colors, then drop the last one ([:-1]) because | |
# it equals the first one (hue 0 = hue 1)) | |
return [ | |
"#%02x%02x%02x" % hsl_to_rgb(hue, saturation, lightness) | |
for hue in floatrange(start_hue, start_hue + 1, n + 1) | |
][:-1] | |
def set_sidebar(css): | |
white_link_wrapper = "<link rel='stylesheet' href='https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.2/css/all.min.css'><a href='{}'>{}</a>" | |
with st.sidebar: | |
st.markdown(f"<style>{css}</style>", unsafe_allow_html=True) | |
st.image( | |
"http://nlp.uniroma1.it/static/website/sapienza-nlp-logo-wh.svg", | |
use_column_width=True, | |
) | |
st.markdown("## ReLiK") | |
st.write( | |
f""" | |
- {white_link_wrapper.format("#", "<i class='fa-solid fa-file'></i> Paper")} | |
- {white_link_wrapper.format("https://github.com/SapienzaNLP/relik", "<i class='fa-brands fa-github'></i> GitHub")} | |
- {white_link_wrapper.format("https://hub.docker.com/repository/docker/sapienzanlp/relik", "<i class='fa-brands fa-docker'></i> Docker Hub")} | |
""", | |
unsafe_allow_html=True, | |
) | |
st.markdown("## Sapienza NLP") | |
st.write( | |
f""" | |
- {white_link_wrapper.format("https://nlp.uniroma1.it", "<i class='fa-solid fa-globe'></i> Webpage")} | |
- {white_link_wrapper.format("https://github.com/SapienzaNLP", "<i class='fa-brands fa-github'></i> GitHub")} | |
- {white_link_wrapper.format("https://twitter.com/SapienzaNLP", "<i class='fa-brands fa-twitter'></i> Twitter")} | |
- {white_link_wrapper.format("https://www.linkedin.com/company/79434450", "<i class='fa-brands fa-linkedin'></i> LinkedIn")} | |
""", | |
unsafe_allow_html=True, | |
) | |
def get_el_annotations(response): | |
# swap labels key with ents | |
ents = [{"start": l.start, "end": l.end, "label": l.label} for l in response.labels] | |
dict_of_ents = {"text": response.text, "ents": ents} | |
label_in_text = set(l["label"] for l in dict_of_ents["ents"]) | |
options = {"ents": label_in_text, "colors": get_random_color(label_in_text)} | |
return dict_of_ents, options | |
def load_model(): | |
return Relik( | |
question_encoder="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/question_encoder", | |
document_index="/home/user/app/models/relik-retriever-small-aida-blink-pretrain-omniencoder/document_index_filtered", | |
reader="/home/user/app/models/relik-reader-aida-deberta-small", | |
top_k=100, | |
window_size=32, | |
window_stride=16, | |
candidates_preprocessing_fn="relik.inference.preprocessing.wikipedia_title_and_openings_preprocessing", | |
) | |
def set_intro(css): | |
# intro | |
st.markdown("# ReLik") | |
st.markdown( | |
"### Retrieve, Read and LinK: Fast and Accurate Entity Linking and Relation Extraction on an Academic Budget" | |
) | |
# st.markdown( | |
# "This is a front-end for the paper [Universal Semantic Annotator: the First Unified API " | |
# "for WSD, SRL and Semantic Parsing](https://www.researchgate.net/publication/360671045_Universal_Semantic_Annotator_the_First_Unified_API_for_WSD_SRL_and_Semantic_Parsing), which will be presented at LREC 2022 by " | |
# "[Riccardo Orlando](https://riccorl.github.io), [Simone Conia](https://c-simone.github.io/), " | |
# "[Stefano Faralli](https://corsidilaurea.uniroma1.it/it/users/stefanofaralliuniroma1it), and [Roberto Navigli](https://www.diag.uniroma1.it/navigli/)." | |
# ) | |
badge(type="github", name="sapienzanlp/relik") | |
badge(type="pypi", name="relik") | |
def run_client(): | |
with open(Path(__file__).parent / "style.css") as f: | |
css = f.read() | |
st.set_page_config( | |
page_title="ReLik", | |
page_icon="🦮", | |
layout="wide", | |
) | |
set_sidebar(css) | |
set_intro(css) | |
# text input | |
text = st.text_area( | |
"Enter Text Below:", | |
value="Michael Jordan was one of the best players in the NBA.", | |
height=200, | |
max_chars=1500, | |
) | |
with stylable_container( | |
key="annotate_button", | |
css_styles=""" | |
button { | |
background-color: #802433; | |
color: white; | |
border-radius: 25px; | |
} | |
""", | |
): | |
submit = st.button("Annotate") | |
# submit = st.button("Run") | |
if "relik_model" not in st.session_state.keys(): | |
st.session_state["relik_model"] = load_model() | |
relik_model = st.session_state["relik_model"] | |
# ReLik API call | |
if submit: | |
text = text.strip() | |
if text: | |
st.markdown("####") | |
st.markdown("#### Entity Linking") | |
with st.spinner(text="In progress"): | |
response = relik_model(text) | |
# response = requests.post(RELIK, json=text) | |
# if response.status_code != 200: | |
# st.error("Error: {}".format(response.status_code)) | |
# else: | |
# response = response.json() | |
# Entity Linking | |
# with stylable_container( | |
# key="container_with_border", | |
# css_styles=""" | |
# { | |
# border: 1px solid rgba(49, 51, 63, 0.2); | |
# border-radius: 0.5rem; | |
# padding: 0.5rem; | |
# padding-bottom: 2rem; | |
# } | |
# """, | |
# ): | |
# st.markdown("##") | |
dict_of_ents, options = get_el_annotations(response=response) | |
display = displacy.render( | |
dict_of_ents, manual=True, style="ent", options=options | |
) | |
display = display.replace("\n", " ") | |
# wsd_display = re.sub( | |
# r"(wiki::\d+\w)", | |
# r"<a href='https://babelnet.org/synset?id=\g<1>&orig=\g<1>&lang={}'>\g<1></a>".format( | |
# language.upper() | |
# ), | |
# wsd_display, | |
# ) | |
with st.container(): | |
st.write(display, unsafe_allow_html=True) | |
st.markdown("####") | |
st.markdown("#### Relation Extraction") | |
with st.container(): | |
st.write("Coming :)", unsafe_allow_html=True) | |
else: | |
st.error("Please enter some text.") | |
if __name__ == "__main__": | |
run_client() | |