Spaces:
Runtime error
Runtime error
Riccardo Giorato
commited on
Commit
•
9b66f28
1
Parent(s):
9034bd2
fixes?
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import utils
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
9 |
-
|
10 |
class Model:
|
11 |
def __init__(self, name, path, prefix):
|
12 |
self.name = name
|
@@ -15,7 +14,6 @@ class Model:
|
|
15 |
self.pipe_t2i = None
|
16 |
self.pipe_i2i = None
|
17 |
|
18 |
-
|
19 |
models = [
|
20 |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
21 |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
@@ -23,8 +21,8 @@ models = [
|
|
23 |
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style "),
|
24 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
25 |
Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
|
26 |
-
]
|
27 |
-
|
28 |
scheduler = DPMSolverMultistepScheduler(
|
29 |
beta_start=0.00085,
|
30 |
beta_end=0.012,
|
@@ -38,51 +36,53 @@ scheduler = DPMSolverMultistepScheduler(
|
|
38 |
lower_order_final=True,
|
39 |
)
|
40 |
|
|
|
|
|
|
|
|
|
|
|
41 |
last_mode = "txt2img"
|
42 |
-
current_model = models[0]
|
43 |
current_model_path = current_model.path
|
44 |
|
45 |
if is_colab:
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
60 |
-
except:
|
61 |
-
models.remove(model)
|
62 |
-
pipe = models[0].pipe_t2i
|
63 |
-
|
64 |
if torch.cuda.is_available():
|
65 |
-
|
66 |
|
67 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
68 |
|
|
|
|
|
|
|
|
|
69 |
|
70 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
generator = torch.Generator('cuda').manual_seed(
|
79 |
-
seed) if seed != 0 else None
|
80 |
|
81 |
-
|
82 |
-
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
83 |
-
else:
|
84 |
-
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
85 |
|
|
|
|
|
|
|
|
|
86 |
|
87 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
88 |
|
@@ -92,31 +92,29 @@ def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, g
|
|
92 |
if model_path != current_model_path or last_mode != "txt2img":
|
93 |
current_model_path = model_path
|
94 |
|
95 |
-
if is_colab:
|
96 |
-
|
97 |
-
current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
98 |
else:
|
99 |
-
|
100 |
-
|
101 |
|
102 |
if torch.cuda.is_available():
|
103 |
-
|
104 |
last_mode = "txt2img"
|
105 |
|
106 |
-
prompt = current_model.prefix + prompt
|
107 |
result = pipe(
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
return replace_nsfw_images(result)
|
118 |
|
119 |
-
|
120 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
121 |
|
122 |
global last_mode
|
@@ -125,126 +123,118 @@ def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, w
|
|
125 |
if model_path != current_model_path or last_mode != "img2img":
|
126 |
current_model_path = model_path
|
127 |
|
128 |
-
if is_colab:
|
129 |
-
|
130 |
-
current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
131 |
else:
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
if torch.cuda.is_available():
|
136 |
-
|
137 |
last_mode = "img2img"
|
138 |
|
139 |
prompt = current_model.prefix + prompt
|
140 |
ratio = min(height / img.height, width / img.width)
|
141 |
-
img = img.resize(
|
142 |
-
(int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
143 |
result = pipe(
|
144 |
prompt,
|
145 |
-
negative_prompt=neg_prompt,
|
146 |
# num_images_per_prompt=n_images,
|
147 |
-
init_image=img,
|
148 |
-
num_inference_steps=int(steps),
|
149 |
-
strength=strength,
|
150 |
-
guidance_scale=guidance,
|
151 |
-
width=width,
|
152 |
-
height=height,
|
153 |
-
generator=generator)
|
154 |
-
|
155 |
return replace_nsfw_images(result)
|
156 |
|
157 |
-
|
158 |
def replace_nsfw_images(results):
|
159 |
for i in range(len(results.images)):
|
160 |
-
|
161 |
-
|
162 |
return results.images[0]
|
163 |
|
164 |
-
|
165 |
-
css = """.playground-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.playground-diffusion-div div h1{font-weight:900;margin-bottom:7px}.playground-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
166 |
"""
|
167 |
with gr.Blocks(css=css) as demo:
|
168 |
gr.HTML(
|
169 |
f"""
|
170 |
-
<div class="
|
171 |
<div>
|
172 |
<h1>Playground Diffusion</h1>
|
173 |
</div>
|
174 |
<p>
|
175 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
176 |
-
|
177 |
<a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/>
|
178 |
<a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/>
|
179 |
Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
180 |
-
</p>
|
181 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
182 |
</p>
|
183 |
</div>
|
184 |
"""
|
185 |
)
|
186 |
with gr.Row():
|
187 |
-
|
188 |
with gr.Column(scale=55):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
with gr.Group():
|
190 |
-
|
191 |
-
m.name for m in models], value=current_model.name)
|
192 |
|
193 |
-
|
194 |
-
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,
|
195 |
-
placeholder="Enter prompt. Style applied automatically").style(container=False)
|
196 |
-
generate = gr.Button(value="Generate").style(
|
197 |
-
rounded=(False, True, True, False))
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
# ).style(grid=[1], height="auto")
|
203 |
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
height = gr.Slider(
|
222 |
-
label="Height", value=512, minimum=64, maximum=1024, step=8)
|
223 |
-
|
224 |
-
seed = gr.Slider(
|
225 |
-
0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
226 |
-
|
227 |
-
with gr.Tab("Image to image"):
|
228 |
-
with gr.Group():
|
229 |
-
image = gr.Image(label="Image", height=256,
|
230 |
-
tool="editor", type="pil")
|
231 |
-
strength = gr.Slider(
|
232 |
-
label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
233 |
-
|
234 |
-
inputs = [model_name, prompt, guidance, steps,
|
235 |
-
width, height, seed, image, strength, neg_prompt]
|
236 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
237 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
238 |
|
239 |
ex = gr.Examples([
|
240 |
-
[models[
|
241 |
-
[models[
|
242 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
|
243 |
|
244 |
gr.HTML("""
|
245 |
-
|
246 |
""")
|
247 |
|
248 |
if not is_colab:
|
249 |
-
|
250 |
-
demo.launch(debug=is_colab, share=is_colab)
|
|
|
6 |
|
7 |
is_colab = utils.is_google_colab()
|
8 |
|
|
|
9 |
class Model:
|
10 |
def __init__(self, name, path, prefix):
|
11 |
self.name = name
|
|
|
14 |
self.pipe_t2i = None
|
15 |
self.pipe_i2i = None
|
16 |
|
|
|
17 |
models = [
|
18 |
Model("Beeple", "riccardogiorato/beeple-diffusion", "beeple style "),
|
19 |
Model("Avatar", "riccardogiorato/avatar-diffusion", "avatartwow style "),
|
|
|
21 |
Model("Poolsuite", "prompthero/poolsuite", "poolsuite style "),
|
22 |
Model("Robo Diffusion", "nousr/robo-diffusion", ""),
|
23 |
Model("Guohua", "Langboat/Guohua-Diffusion", "guohua style ")
|
24 |
+
]
|
25 |
+
|
26 |
scheduler = DPMSolverMultistepScheduler(
|
27 |
beta_start=0.00085,
|
28 |
beta_end=0.012,
|
|
|
36 |
lower_order_final=True,
|
37 |
)
|
38 |
|
39 |
+
custom_model = None
|
40 |
+
if is_colab:
|
41 |
+
models.insert(0, Model("Custom model", "", ""))
|
42 |
+
custom_model = models[0]
|
43 |
+
|
44 |
last_mode = "txt2img"
|
45 |
+
current_model = models[1] if is_colab else models[0]
|
46 |
current_model_path = current_model.path
|
47 |
|
48 |
if is_colab:
|
49 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model.path, torch_dtype=torch.float16, scheduler=scheduler)
|
50 |
+
|
51 |
+
else: # download all models
|
52 |
+
vae = AutoencoderKL.from_pretrained(current_model.path, subfolder="vae", torch_dtype=torch.float16)
|
53 |
+
for model in models:
|
54 |
+
try:
|
55 |
+
unet = UNet2DConditionModel.from_pretrained(model.path, subfolder="unet", torch_dtype=torch.float16)
|
56 |
+
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
57 |
+
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(model.path, unet=unet, vae=vae, torch_dtype=torch.float16, scheduler=scheduler)
|
58 |
+
except:
|
59 |
+
models.remove(model)
|
60 |
+
pipe = models[0].pipe_t2i
|
61 |
+
|
|
|
|
|
|
|
|
|
|
|
62 |
if torch.cuda.is_available():
|
63 |
+
pipe = pipe.to("cuda")
|
64 |
|
65 |
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
|
66 |
|
67 |
+
def custom_model_changed(path):
|
68 |
+
models[0].path = path
|
69 |
+
global current_model
|
70 |
+
current_model = models[0]
|
71 |
|
72 |
def inference(model_name, prompt, guidance, steps, width=512, height=512, seed=0, img=None, strength=0.5, neg_prompt=""):
|
73 |
|
74 |
+
global current_model
|
75 |
+
for model in models:
|
76 |
+
if model.name == model_name:
|
77 |
+
current_model = model
|
78 |
+
model_path = current_model.path
|
|
|
|
|
|
|
79 |
|
80 |
+
generator = torch.Generator('cuda').manual_seed(seed) if seed != 0 else None
|
|
|
|
|
|
|
81 |
|
82 |
+
if img is not None:
|
83 |
+
return img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator)
|
84 |
+
else:
|
85 |
+
return txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator)
|
86 |
|
87 |
def txt_to_img(model_path, prompt, neg_prompt, guidance, steps, width, height, generator=None):
|
88 |
|
|
|
92 |
if model_path != current_model_path or last_mode != "txt2img":
|
93 |
current_model_path = model_path
|
94 |
|
95 |
+
if is_colab or current_model == custom_model:
|
96 |
+
pipe = StableDiffusionPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
|
|
97 |
else:
|
98 |
+
pipe.to("cpu")
|
99 |
+
pipe = current_model.pipe_t2i
|
100 |
|
101 |
if torch.cuda.is_available():
|
102 |
+
pipe = pipe.to("cuda")
|
103 |
last_mode = "txt2img"
|
104 |
|
105 |
+
prompt = current_model.prefix + prompt
|
106 |
result = pipe(
|
107 |
+
prompt,
|
108 |
+
negative_prompt = neg_prompt,
|
109 |
+
# num_images_per_prompt=n_images,
|
110 |
+
num_inference_steps = int(steps),
|
111 |
+
guidance_scale = guidance,
|
112 |
+
width = width,
|
113 |
+
height = height,
|
114 |
+
generator = generator)
|
115 |
+
|
116 |
return replace_nsfw_images(result)
|
117 |
|
|
|
118 |
def img_to_img(model_path, prompt, neg_prompt, img, strength, guidance, steps, width, height, generator=None):
|
119 |
|
120 |
global last_mode
|
|
|
123 |
if model_path != current_model_path or last_mode != "img2img":
|
124 |
current_model_path = model_path
|
125 |
|
126 |
+
if is_colab or current_model == custom_model:
|
127 |
+
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(current_model_path, torch_dtype=torch.float16, scheduler=scheduler)
|
|
|
128 |
else:
|
129 |
+
pipe.to("cpu")
|
130 |
+
pipe = current_model.pipe_i2i
|
131 |
+
|
132 |
if torch.cuda.is_available():
|
133 |
+
pipe = pipe.to("cuda")
|
134 |
last_mode = "img2img"
|
135 |
|
136 |
prompt = current_model.prefix + prompt
|
137 |
ratio = min(height / img.height, width / img.width)
|
138 |
+
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
|
|
|
139 |
result = pipe(
|
140 |
prompt,
|
141 |
+
negative_prompt = neg_prompt,
|
142 |
# num_images_per_prompt=n_images,
|
143 |
+
init_image = img,
|
144 |
+
num_inference_steps = int(steps),
|
145 |
+
strength = strength,
|
146 |
+
guidance_scale = guidance,
|
147 |
+
width = width,
|
148 |
+
height = height,
|
149 |
+
generator = generator)
|
150 |
+
|
151 |
return replace_nsfw_images(result)
|
152 |
|
|
|
153 |
def replace_nsfw_images(results):
|
154 |
for i in range(len(results.images)):
|
155 |
+
if results.nsfw_content_detected[i]:
|
156 |
+
results.images[i] = Image.open("nsfw.png")
|
157 |
return results.images[0]
|
158 |
|
159 |
+
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
|
|
|
160 |
"""
|
161 |
with gr.Blocks(css=css) as demo:
|
162 |
gr.HTML(
|
163 |
f"""
|
164 |
+
<div class="finetuned-diffusion-div">
|
165 |
<div>
|
166 |
<h1>Playground Diffusion</h1>
|
167 |
</div>
|
168 |
<p>
|
169 |
Demo for multiple fine-tuned Stable Diffusion models, trained on different styles: <br>
|
170 |
+
<a href="https://huggingface.co/riccardogiorato/avatar-diffusion">Avatar</a>,<br/>
|
171 |
<a href="https://huggingface.co/riccardogiorato/beeple-diffusion">Beeple</a>,<br/>
|
172 |
<a href="https://huggingface.co/s3nh/beksinski-style-stable-diffusion">Beksinski</a>,<br/>
|
173 |
Diffusers 🧨 SD model hosted on HuggingFace 🤗.
|
|
|
174 |
Running on <b>{device}</b>{(" in a <b>Google Colab</b>." if is_colab else "")}
|
175 |
</p>
|
176 |
</div>
|
177 |
"""
|
178 |
)
|
179 |
with gr.Row():
|
180 |
+
|
181 |
with gr.Column(scale=55):
|
182 |
+
with gr.Group():
|
183 |
+
model_name = gr.Dropdown(label="Model", choices=[m.name for m in models], value=current_model.name)
|
184 |
+
with gr.Box(visible=False) as custom_model_group:
|
185 |
+
custom_model_path = gr.Textbox(label="Custom model path", placeholder="Path to model, e.g. nitrosocke/Arcane-Diffusion", interactive=True)
|
186 |
+
gr.HTML("<div><font size='2'>Custom models have to be downloaded first, so give it some time.</font></div>")
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
prompt = gr.Textbox(label="Prompt", show_label=False, max_lines=2,placeholder="Enter prompt. Style applied automatically").style(container=False)
|
190 |
+
generate = gr.Button(value="Generate").style(rounded=(False, True, True, False))
|
191 |
+
|
192 |
+
|
193 |
+
image_out = gr.Image(height=512)
|
194 |
+
# gallery = gr.Gallery(
|
195 |
+
# label="Generated images", show_label=False, elem_id="gallery"
|
196 |
+
# ).style(grid=[1], height="auto")
|
197 |
+
|
198 |
+
with gr.Column(scale=45):
|
199 |
+
with gr.Tab("Options"):
|
200 |
with gr.Group():
|
201 |
+
neg_prompt = gr.Textbox(label="Negative prompt", placeholder="What to exclude from the image")
|
|
|
202 |
|
203 |
+
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
|
|
|
|
|
|
|
|
|
204 |
|
205 |
+
with gr.Row():
|
206 |
+
guidance = gr.Slider(label="Guidance scale", value=7.5, maximum=15)
|
207 |
+
steps = gr.Slider(label="Steps", value=25, minimum=2, maximum=75, step=1)
|
|
|
208 |
|
209 |
+
with gr.Row():
|
210 |
+
width = gr.Slider(label="Width", value=512, minimum=64, maximum=1024, step=8)
|
211 |
+
height = gr.Slider(label="Height", value=512, minimum=64, maximum=1024, step=8)
|
212 |
+
|
213 |
+
seed = gr.Slider(0, 2147483647, label='Seed (0 = random)', value=0, step=1)
|
214 |
+
|
215 |
+
with gr.Tab("Image to image"):
|
216 |
+
with gr.Group():
|
217 |
+
image = gr.Image(label="Image", height=256, tool="editor", type="pil")
|
218 |
+
strength = gr.Slider(label="Transformation strength", minimum=0, maximum=1, step=0.01, value=0.5)
|
219 |
+
|
220 |
+
if is_colab:
|
221 |
+
model_name.change(lambda x: gr.update(visible = x == models[0].name), inputs=model_name, outputs=custom_model_group)
|
222 |
+
custom_model_path.change(custom_model_changed, inputs=custom_model_path, outputs=None)
|
223 |
+
# n_images.change(lambda n: gr.Gallery().style(grid=[2 if n > 1 else 1], height="auto"), inputs=n_images, outputs=gallery)
|
224 |
+
|
225 |
+
inputs = [model_name, prompt, guidance, steps, width, height, seed, image, strength, neg_prompt]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
prompt.submit(inference, inputs=inputs, outputs=image_out)
|
227 |
generate.click(inference, inputs=inputs, outputs=image_out)
|
228 |
|
229 |
ex = gr.Examples([
|
230 |
+
[models[1].name, "Neon techno-magic robot with spear pierces an ancient beast, hyperrealism, no blur, 4k resolution, ultra detailed", 7.5, 50],
|
231 |
+
[models[1].name, "halfturn portrait of a big crystal face of a beautiful abstract ancient Egyptian elderly shaman woman, made of iridescent golden crystals, half - turn, bottom view, ominous, intricate, studio, art by anthony macbain and greg rutkowski and alphonse mucha, concept art, 4k, sharp focus", 7.5, 25],
|
232 |
], [model_name, prompt, guidance, steps, seed], image_out, inference, cache_examples=False)
|
233 |
|
234 |
gr.HTML("""
|
235 |
+
<p>Models by <a href="https://huggingface.co/riccardogiorato">@riccardogiorato</a><br></p>
|
236 |
""")
|
237 |
|
238 |
if not is_colab:
|
239 |
+
demo.queue(concurrency_count=1)
|
240 |
+
demo.launch(debug=is_colab, share=is_colab)
|