Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import BertModel, BertTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
from sklearn.decomposition import PCA
|
| 5 |
+
import plotly.graph_objs as go
|
| 6 |
+
|
| 7 |
+
# BERT embeddings function
|
| 8 |
+
def get_bert_embeddings(words):
|
| 9 |
+
# Load pre-trained BERT model and tokenizer
|
| 10 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 11 |
+
model = BertModel.from_pretrained('bert-base-uncased')
|
| 12 |
+
|
| 13 |
+
embeddings = []
|
| 14 |
+
|
| 15 |
+
# Extract embeddings
|
| 16 |
+
for word in words:
|
| 17 |
+
inputs = tokenizer(word, return_tensors='pt')
|
| 18 |
+
outputs = model(**inputs)
|
| 19 |
+
embeddings.append(outputs.last_hidden_state[0][0].detach().numpy())
|
| 20 |
+
|
| 21 |
+
# Reduce dimensions to 3 using PCA
|
| 22 |
+
pca = PCA(n_components=3)
|
| 23 |
+
reduced_embeddings = pca.fit_transform(embeddings)
|
| 24 |
+
|
| 25 |
+
return reduced_embeddings
|
| 26 |
+
|
| 27 |
+
# Plotly plotting function
|
| 28 |
+
def plot_interactive_bert_embeddings(embeddings, words):
|
| 29 |
+
data = []
|
| 30 |
+
|
| 31 |
+
for i, word in enumerate(words):
|
| 32 |
+
trace = go.Scatter3d(
|
| 33 |
+
x=[embeddings[i][0]],
|
| 34 |
+
y=[embeddings[i][1]],
|
| 35 |
+
z=[embeddings[i][2]],
|
| 36 |
+
mode='markers+text',
|
| 37 |
+
text=[word],
|
| 38 |
+
name=word
|
| 39 |
+
)
|
| 40 |
+
data.append(trace)
|
| 41 |
+
|
| 42 |
+
layout = go.Layout(
|
| 43 |
+
title='3D Scatter Plot of BERT Embeddings',
|
| 44 |
+
scene=dict(
|
| 45 |
+
xaxis=dict(title='PCA Component 1'),
|
| 46 |
+
yaxis=dict(title='PCA Component 2'),
|
| 47 |
+
zaxis=dict(title='PCA Component 3')
|
| 48 |
+
)
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
fig = go.Figure(data=data, layout=layout)
|
| 52 |
+
return fig
|
| 53 |
+
|
| 54 |
+
# Streamlit app
|
| 55 |
+
def main():
|
| 56 |
+
st.title("BERT Embeddings Visualization")
|
| 57 |
+
|
| 58 |
+
# Text input for words
|
| 59 |
+
words_input = st.text_area("Enter words/phrases separated by commas:", "Spider-Man, Rocket Racoon, Venom, Spider, Racoon, Snake")
|
| 60 |
+
words = [word.strip() for word in words_input.split(',')]
|
| 61 |
+
|
| 62 |
+
if st.button("Generate Embeddings"):
|
| 63 |
+
with st.spinner('Generating embeddings...'):
|
| 64 |
+
embeddings = get_bert_embeddings(words)
|
| 65 |
+
fig = plot_interactive_bert_embeddings(embeddings, words)
|
| 66 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 67 |
+
|
| 68 |
+
if __name__ == "__main__":
|
| 69 |
+
main()
|