Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import BertModel, BertTokenizer, RobertaModel, RobertaTokenizer
|
3 |
from sklearn.decomposition import PCA
|
4 |
import plotly.graph_objs as go
|
@@ -31,38 +32,17 @@ def plot_interactive_embeddings(embeddings, words):
|
|
31 |
|
32 |
if len(words) == 2:
|
33 |
fig = go.Figure(data=[
|
34 |
-
go.Scatter(
|
35 |
-
|
36 |
-
y=[emb[1]],
|
37 |
-
mode='markers+text',
|
38 |
-
text=[word],
|
39 |
-
name=word
|
40 |
-
) for emb, word in zip(reduced_embeddings, words)
|
41 |
])
|
42 |
-
fig.update_layout(
|
43 |
-
title='2D Scatter Plot of Embeddings',
|
44 |
-
xaxis_title='PCA Component 1',
|
45 |
-
yaxis_title='PCA Component 2'
|
46 |
-
)
|
47 |
else:
|
48 |
fig = go.Figure(data=[
|
49 |
-
go.Scatter3d(
|
50 |
-
|
51 |
-
y=[emb[1]],
|
52 |
-
z=[emb[2]],
|
53 |
-
mode='markers+text',
|
54 |
-
text=[word],
|
55 |
-
name=word
|
56 |
-
) for emb, word in zip(reduced_embeddings, words)
|
57 |
])
|
58 |
-
fig.update_layout(
|
59 |
-
|
60 |
-
scene=dict(
|
61 |
-
xaxis_title='PCA Component 1',
|
62 |
-
yaxis_title='PCA Component 2',
|
63 |
-
zaxis_title='PCA Component 3'
|
64 |
-
)
|
65 |
-
)
|
66 |
|
67 |
fig.update_layout(autosize=False, width=800, height=600)
|
68 |
st.plotly_chart(fig, use_container_width=True)
|
@@ -72,33 +52,50 @@ def plot_interactive_embeddings(embeddings, words):
|
|
72 |
def main():
|
73 |
st.title("Language Model Embeddings Visualization")
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
model_choice = st.selectbox("Choose a model:", ["BERT", "RoBERTa"])
|
76 |
tokenizer, model = load_model(model_choice)
|
77 |
|
78 |
default_word = "example"
|
79 |
-
if "words" not in st.session_state
|
80 |
st.session_state.words = [default_word]
|
81 |
-
st.session_state.model = model_choice
|
82 |
init_db()
|
83 |
embedding = get_embeddings([default_word], tokenizer, model)[0]
|
84 |
save_embeddings_to_db(default_word, embedding)
|
85 |
-
elif st.session_state.model != model_choice:
|
86 |
-
st.session_state.words = [default_word]
|
87 |
-
st.session_state.model = model_choice
|
88 |
-
clear_all_entries()
|
89 |
-
embedding = get_embeddings([default_word], tokenizer, model)[0]
|
90 |
-
save_embeddings_to_db(default_word, embedding)
|
91 |
|
92 |
st.write(f"Current words ({model_choice}):", ", ".join(st.session_state.words))
|
93 |
|
94 |
new_word = st.text_input("Enter a new word or phrase:", "")
|
95 |
if st.button("Add Word/Phrase"):
|
96 |
-
if new_word:
|
97 |
embedding = get_embeddings([new_word], tokenizer, model)[0]
|
98 |
save_embeddings_to_db(new_word, embedding)
|
99 |
st.session_state.words.append(new_word)
|
100 |
st.experimental_rerun()
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
if st.button("Clear All Entries"):
|
103 |
clear_all_entries()
|
104 |
st.session_state.words = [default_word]
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
from transformers import BertModel, BertTokenizer, RobertaModel, RobertaTokenizer
|
4 |
from sklearn.decomposition import PCA
|
5 |
import plotly.graph_objs as go
|
|
|
32 |
|
33 |
if len(words) == 2:
|
34 |
fig = go.Figure(data=[
|
35 |
+
go.Scatter(x=[emb[0]], y=[emb[1]], mode='markers+text', text=[word], name=word)
|
36 |
+
for emb, word in zip(reduced_embeddings, words)
|
|
|
|
|
|
|
|
|
|
|
37 |
])
|
38 |
+
fig.update_layout(title='2D Scatter Plot of Embeddings', xaxis_title='PCA Component 1', yaxis_title='PCA Component 2')
|
|
|
|
|
|
|
|
|
39 |
else:
|
40 |
fig = go.Figure(data=[
|
41 |
+
go.Scatter3d(x=[emb[0]], y=[emb[1]], z=[emb[2]], mode='markers+text', text=[word], name=word)
|
42 |
+
for emb, word in zip(reduced_embeddings, words)
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
])
|
44 |
+
fig.update_layout(title='3D Scatter Plot of Embeddings',
|
45 |
+
scene=dict(xaxis_title='PCA Component 1', yaxis_title='PCA Component 2', zaxis_title='PCA Component 3'))
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
fig.update_layout(autosize=False, width=800, height=600)
|
48 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
52 |
def main():
|
53 |
st.title("Language Model Embeddings Visualization")
|
54 |
|
55 |
+
st.markdown("""
|
56 |
+
This application visualizes word embeddings from BERT or RoBERTa language models.
|
57 |
+
Here's how to use it:
|
58 |
+
1. Choose a model (BERT or RoBERTa) from the dropdown menu.
|
59 |
+
2. Enter words or phrases one at a time, or upload a CSV file with a 'word' column.
|
60 |
+
3. View the 2D or 3D plot of the embeddings.
|
61 |
+
4. Download the current database as a CSV file for later use.
|
62 |
+
Explore how different words relate to each other in the embedding space!
|
63 |
+
""")
|
64 |
+
|
65 |
model_choice = st.selectbox("Choose a model:", ["BERT", "RoBERTa"])
|
66 |
tokenizer, model = load_model(model_choice)
|
67 |
|
68 |
default_word = "example"
|
69 |
+
if "words" not in st.session_state:
|
70 |
st.session_state.words = [default_word]
|
|
|
71 |
init_db()
|
72 |
embedding = get_embeddings([default_word], tokenizer, model)[0]
|
73 |
save_embeddings_to_db(default_word, embedding)
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
st.write(f"Current words ({model_choice}):", ", ".join(st.session_state.words))
|
76 |
|
77 |
new_word = st.text_input("Enter a new word or phrase:", "")
|
78 |
if st.button("Add Word/Phrase"):
|
79 |
+
if new_word and new_word not in st.session_state.words:
|
80 |
embedding = get_embeddings([new_word], tokenizer, model)[0]
|
81 |
save_embeddings_to_db(new_word, embedding)
|
82 |
st.session_state.words.append(new_word)
|
83 |
st.experimental_rerun()
|
84 |
|
85 |
+
uploaded_file = st.file_uploader("Upload CSV file", type="csv")
|
86 |
+
if uploaded_file is not None:
|
87 |
+
df = pd.read_csv(uploaded_file)
|
88 |
+
if 'word' in df.columns:
|
89 |
+
new_words = df['word'].tolist()
|
90 |
+
for word in new_words:
|
91 |
+
if word not in st.session_state.words:
|
92 |
+
embedding = get_embeddings([word], tokenizer, model)[0]
|
93 |
+
save_embeddings_to_db(word, embedding)
|
94 |
+
st.session_state.words.append(word)
|
95 |
+
st.experimental_rerun()
|
96 |
+
else:
|
97 |
+
st.error("The CSV file must contain a 'word' column.")
|
98 |
+
|
99 |
if st.button("Clear All Entries"):
|
100 |
clear_all_entries()
|
101 |
st.session_state.words = [default_word]
|