Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
|
4 |
+
|
5 |
+
SHEET_ID = '1eaqWOSqNAY64E8jce5R8APAe12WFGga7f0xK3Ygt9HY'
|
6 |
+
SHEET_NAME = 'Sheet1'
|
7 |
+
csv_url = f'https://docs.google.com/spreadsheets/d/{SHEET_ID}/gviz/tq?tqx=out:csv&sheet={SHEET_NAME}'
|
8 |
+
|
9 |
+
class DataList:
|
10 |
+
def __init__(self):
|
11 |
+
self.table = pd.read_csv(csv_url)
|
12 |
+
self._preprocess_table()
|
13 |
+
|
14 |
+
self.table_header = '''
|
15 |
+
<tr>
|
16 |
+
<td width="12%">Name</td>
|
17 |
+
<td width="52%">Description</td>
|
18 |
+
<td width="12%">Module</td>
|
19 |
+
<td width="12%">Type</td>
|
20 |
+
<td width="12%">Alignment with Key Guidance</td>
|
21 |
+
</tr>'''
|
22 |
+
|
23 |
+
def _preprocess_table(self) -> None:
|
24 |
+
self.table['name_lowercase'] = self.table['Name'].str.lower()
|
25 |
+
|
26 |
+
rows = []
|
27 |
+
for row in self.table.itertuples():
|
28 |
+
source = f'<a href="{row.URL}" target="_parent">{row.Name}</a>' if isinstance(
|
29 |
+
row.URL, str) else '{row.Name}'
|
30 |
+
row = f'''
|
31 |
+
<tr>
|
32 |
+
<td>{source}</td>
|
33 |
+
<td>{row.Description}</td>
|
34 |
+
<td>{row.Module}</td>
|
35 |
+
<td>{row.Type}</td>
|
36 |
+
<td>{row.Alignment}</td>
|
37 |
+
</tr>'''
|
38 |
+
rows.append(row)
|
39 |
+
self.table['html_table_content'] = rows
|
40 |
+
|
41 |
+
def render(self, search_query: str,
|
42 |
+
filter_names: list[str],
|
43 |
+
filter_names2: list[str],
|
44 |
+
filter_names3: list[str]
|
45 |
+
) -> tuple[int, str]:
|
46 |
+
self.table = pd.read_csv(csv_url)
|
47 |
+
self._preprocess_table()
|
48 |
+
|
49 |
+
self.table_header = '''
|
50 |
+
<tr>
|
51 |
+
<td width="12%">Name</td>
|
52 |
+
<td width="52%">Description</td>
|
53 |
+
<td width="12%">Module</td>
|
54 |
+
<td width="12%">Type</td>
|
55 |
+
<td width="12%">Alignment with Key Guidance</td>
|
56 |
+
</tr>'''
|
57 |
+
df = self.table
|
58 |
+
if search_query:
|
59 |
+
df = df[df.name_lowercase.str.contains(search_query.lower())]
|
60 |
+
df = self.filter_table(df, filter_names,filter_names2,filter_names3)
|
61 |
+
result = self.to_html(df, self.table_header)
|
62 |
+
return result
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
def filter_table(df: pd.DataFrame, filter_names: list[str], filter_names2: list[str], filter_name3: list[str],) -> pd.DataFrame:
|
66 |
+
df = df.loc[df.Type.isin(set(filter_names))]
|
67 |
+
print(filter_name3)
|
68 |
+
vals= filter_names3
|
69 |
+
df = df.loc[df.Module.isin(vals)]
|
70 |
+
return df
|
71 |
+
|
72 |
+
@staticmethod
|
73 |
+
def to_html(df: pd.DataFrame, table_header: str) -> str:
|
74 |
+
table_data = ''.join(df.html_table_content)
|
75 |
+
html = f'''
|
76 |
+
<table>
|
77 |
+
{table_header}
|
78 |
+
{table_data}
|
79 |
+
</table>'''
|
80 |
+
return html
|
81 |
+
|
82 |
+
|
83 |
+
data_list = DataList()
|
84 |
+
|
85 |
+
css = """
|
86 |
+
button.svelte-kqij2n{font-weight: bold !important;
|
87 |
+
background-color: #ebecf0;
|
88 |
+
color: black;
|
89 |
+
margin-left: 5px;}
|
90 |
+
#tlsnlbs{}
|
91 |
+
#mtcs{}
|
92 |
+
#mdls{}
|
93 |
+
#dts{}
|
94 |
+
.svelte-kqij2n .selected {
|
95 |
+
background-color: black;
|
96 |
+
color: white;
|
97 |
+
}
|
98 |
+
.app.svelte-182fdeq.svelte-182fdeq {
|
99 |
+
padding: 0 !important;
|
100 |
+
}
|
101 |
+
span.svelte-s1r2yt{font-weight: bold !important;
|
102 |
+
}
|
103 |
+
"""
|
104 |
+
with gr.Blocks(css=css) as demo:
|
105 |
+
with gr.Row():
|
106 |
+
search_box = gr.Textbox( label='Search Name', placeholder='You can search for titles with regular expressions. e.g. (?<!sur)face',max_lines=1, scale = 5)
|
107 |
+
with gr.Row():
|
108 |
+
with gr.Column(scale=1):
|
109 |
+
filter_names = gr.CheckboxGroup(choices=['Guidebook','Assessment Tool','Training and Education',], value=['Guidebook','Assessment Tool','Training and Education',], label='Type')
|
110 |
+
with gr.Column(scale=1):
|
111 |
+
filter_names2 = gr.CheckboxGroup(choices=['NIST AI RMF MAP','NIST AI RMF GOVERN','ISO 42001 A.8',], value=['NIST AI RMF MAP','NIST AI RMF GOVERN','ISO 42001 A.8',], label='Alignment with Key Guidance')
|
112 |
+
with gr.Row():
|
113 |
+
filter_names3 = gr.CheckboxGroup(choices=['Compliance and Regulatory Guidance', 'Generative AI', 'Suppliers and Procurement', 'Policy and Governance', 'Assessing AI Systems',], value=['Compliance and Regulatory Guidance', 'Generative AI', 'Suppliers and Procurement', 'Policy and Governance', 'Assessing AI Systems',], label='Modules', interactive = True)
|
114 |
+
with gr.Row():
|
115 |
+
search_button = gr.Button('Search', size = 'sm', scale =1)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
table = gr.HTML(show_label=False)
|
119 |
+
|
120 |
+
demo.load(fn=data_list.render, inputs=[search_box, filter_names,filter_names2,filter_names3,],outputs=[table,])
|
121 |
+
search_box.submit(fn=data_list.render, inputs=[search_box, filter_names,filter_names2,filter_names3,], outputs=[table,])
|
122 |
+
search_button.click(fn=data_list.render, inputs=[search_box, filter_names,filter_names2,filter_names3,], outputs=[table,])
|
123 |
+
|
124 |
+
demo.queue()
|
125 |
+
demo.launch(share=False)
|