rhasan commited on
Commit
0798794
·
1 Parent(s): 2d855ab

fixed typo

Browse files
app.py CHANGED
@@ -2,7 +2,7 @@ import os
2
  from pathlib import Path
3
  import time
4
  import gradio as gr
5
- from gadio.themes import Soft
6
  import numpy as np
7
  import matplotlib.pyplot as plt
8
  from huggingface_hub import hf_hub_download
@@ -55,25 +55,23 @@ with gr.Blocks(title="UPLME", theme=Soft(primary_hue="blue")) as demo:
55
  gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
56
  with gr.Row():
57
  with gr.Column():
58
- essay_input = gr.Textbox(label="Response (E.g., Essay)", lines=10, placeholder="Enter the essay text here...")
59
  article_input = gr.Textbox(label="Stimulus (E.g., News Article)", lines=10, placeholder="Enter the article text here...")
60
  button = gr.Button("Predict")
61
  with gr.Column():
62
- output_mean = gr.Number(label="Predicted Empathy Score", precision=2)
63
  ci_low = gr.Number(label="95% CI Lower Bound", precision=2)
64
  ci_upp = gr.Number(label="95% CI Upper Bound", precision=2)
65
 
66
- fig = gr.Plot(label="Prediction +/- 95% CI")
67
 
68
  button.click(fn=predict_with_ci, inputs=[essay_input, article_input], outputs=[output_mean, ci_low, ci_upp, fig])
69
 
70
  gr.Markdown("## About")
71
  gr.Markdown("""
72
- This application predicts empathy score using the UPLME model proposed in **UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression** by **Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman and Tom Gedeon**.
73
- The model provides both a mean empathy score and uncertainty estimates.
74
- - **Response**: The text input representing the individual's response (e.g., essay).
75
- - **Stimulus**: The text input representing the stimulus (e.g. newspaper article) that the response is based on.
76
- - **Predicted Empathy**: The predicted empathy score on a scale from 0 to 100.
77
  """)
78
 
79
  if __name__ == "__main__":
 
2
  from pathlib import Path
3
  import time
4
  import gradio as gr
5
+ from gradio.themes import Soft
6
  import numpy as np
7
  import matplotlib.pyplot as plt
8
  from huggingface_hub import hf_hub_download
 
55
  gr.Markdown("# Empathy Prediction with Uncertainty Estimation")
56
  with gr.Row():
57
  with gr.Column():
58
+ essay_input = gr.Textbox(label="Response (E.g., Essay) towards the stimulus", lines=10, placeholder="Enter the essay text here...")
59
  article_input = gr.Textbox(label="Stimulus (E.g., News Article)", lines=10, placeholder="Enter the article text here...")
60
  button = gr.Button("Predict")
61
  with gr.Column():
62
+ output_mean = gr.Number(label="Predicted Empathy Score (0-100)", precision=2)
63
  ci_low = gr.Number(label="95% CI Lower Bound", precision=2)
64
  ci_upp = gr.Number(label="95% CI Upper Bound", precision=2)
65
 
66
+ fig = gr.Plot(label="Prediction +/- 95% CI")
67
 
68
  button.click(fn=predict_with_ci, inputs=[essay_input, article_input], outputs=[output_mean, ci_low, ci_upp, fig])
69
 
70
  gr.Markdown("## About")
71
  gr.Markdown("""
72
+ This application predicts empathy score and uncertainty estimates using the UPLME model proposed in **UPLME: Uncertainty-Aware Probabilistic Language Modelling for Robust Empathy Regression** by **Md Rakibul Hasan, Md Zakir Hossain, Aneesh Krishna, Shafin Rahman and Tom Gedeon**.
73
+ - Paper: https://arxiv.org/abs/2508.03520
74
+ - Code: https://github.com/hasan-rakibul/UPLME
 
 
75
  """)
76
 
77
  if __name__ == "__main__":
src/__pycache__/infer.cpython-313.pyc ADDED
Binary file (1.74 kB). View file
 
src/__pycache__/paired_texts_modelling.cpython-313.pyc ADDED
Binary file (6.68 kB). View file