Spaces:
Sleeping
Sleeping
BuildTools
commited on
Commit
•
23ba7ab
1
Parent(s):
8ea28f6
- app.py +121 -0
- requirements.txt +8 -0
- utils.py +54 -0
- xiaowo/config.json +32 -0
- xiaowo/configuration_chatglm.py +105 -0
- xiaowo/generation_config.json +7 -0
- xiaowo/ice_text.model +3 -0
- xiaowo/modeling_chatglm.py +1471 -0
- xiaowo/optimizer.pt +3 -0
- xiaowo/pytorch_model.bin +3 -0
- xiaowo/quantization.py +533 -0
- xiaowo/rng_state.pth +3 -0
- xiaowo/scheduler.pt +3 -0
- xiaowo/special_tokens_map.json +7 -0
- xiaowo/tokenization_chatglm.py +443 -0
- xiaowo/tokenizer_config.json +22 -0
- xiaowo/trainer_state.json +3016 -0
- xiaowo/training_args.bin +3 -0
app.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import platform
|
3 |
+
import signal
|
4 |
+
from transformers import AutoTokenizer, AutoModel, AutoConfig, AutoModelForCausalLM
|
5 |
+
import readline
|
6 |
+
import torch
|
7 |
+
from accelerate import infer_auto_device_map, init_empty_weights, load_checkpoint_and_dispatch
|
8 |
+
import gradio as gr
|
9 |
+
import time
|
10 |
+
|
11 |
+
model_path = "THUDM/chatglm-6b-int4"
|
12 |
+
# 载入Tokenizer
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
14 |
+
# Fine-tuning 后的表现测试
|
15 |
+
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128)
|
16 |
+
model = AutoModel.from_pretrained(model_path, config=config, trust_remote_code=True)
|
17 |
+
# 此处使用你的 ptuning 工作目录
|
18 |
+
prefix_state_dict = torch.load(os.path.join("./xiaowo", "pytorch_model.bin"))
|
19 |
+
new_prefix_state_dict = {}
|
20 |
+
for k, v in prefix_state_dict.items():
|
21 |
+
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
22 |
+
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
23 |
+
|
24 |
+
model = model.float()
|
25 |
+
model.transformer.prefix_encoder.float()
|
26 |
+
model = model.eval()
|
27 |
+
|
28 |
+
#剩下的直接抄web_demo.py了家人们
|
29 |
+
"""Override Chatbot.postprocess"""
|
30 |
+
|
31 |
+
|
32 |
+
def postprocess(self, y):
|
33 |
+
if y is None:
|
34 |
+
return []
|
35 |
+
for i, (message, response) in enumerate(y):
|
36 |
+
y[i] = (
|
37 |
+
None if message is None else mdtex2html.convert((message)),
|
38 |
+
None if response is None else mdtex2html.convert(response),
|
39 |
+
)
|
40 |
+
return y
|
41 |
+
|
42 |
+
|
43 |
+
gr.Chatbot.postprocess = postprocess
|
44 |
+
|
45 |
+
|
46 |
+
def parse_text(text):
|
47 |
+
"""copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT/"""
|
48 |
+
lines = text.split("\n")
|
49 |
+
lines = [line for line in lines if line != ""]
|
50 |
+
count = 0
|
51 |
+
for i, line in enumerate(lines):
|
52 |
+
if "```" in line:
|
53 |
+
count += 1
|
54 |
+
items = line.split('`')
|
55 |
+
if count % 2 == 1:
|
56 |
+
lines[i] = f'<pre><code class="language-{items[-1]}">'
|
57 |
+
else:
|
58 |
+
lines[i] = f'<br></code></pre>'
|
59 |
+
else:
|
60 |
+
if i > 0:
|
61 |
+
if count % 2 == 1:
|
62 |
+
line = line.replace("`", "\`")
|
63 |
+
line = line.replace("<", "<")
|
64 |
+
line = line.replace(">", ">")
|
65 |
+
line = line.replace(" ", " ")
|
66 |
+
line = line.replace("*", "*")
|
67 |
+
line = line.replace("_", "_")
|
68 |
+
line = line.replace("-", "-")
|
69 |
+
line = line.replace(".", ".")
|
70 |
+
line = line.replace("!", "!")
|
71 |
+
line = line.replace("(", "(")
|
72 |
+
line = line.replace(")", ")")
|
73 |
+
line = line.replace("$", "$")
|
74 |
+
lines[i] = "<br>"+line
|
75 |
+
text = "".join(lines)
|
76 |
+
return text
|
77 |
+
|
78 |
+
|
79 |
+
def predict(input, chatbot, max_length, top_p, temperature, history):
|
80 |
+
chatbot.append((parse_text(input), ""))
|
81 |
+
for response, history in model.stream_chat(tokenizer, input, history, max_length=max_length, top_p=top_p,
|
82 |
+
temperature=temperature):
|
83 |
+
chatbot[-1] = (parse_text(input), parse_text(response))
|
84 |
+
|
85 |
+
yield chatbot, history
|
86 |
+
|
87 |
+
|
88 |
+
def reset_user_input():
|
89 |
+
return gr.update(value='')
|
90 |
+
|
91 |
+
|
92 |
+
def reset_state():
|
93 |
+
return [], []
|
94 |
+
|
95 |
+
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
gr.HTML("""<h1 align="center">ChatGLM</h1>""")
|
98 |
+
|
99 |
+
chatbot = gr.Chatbot()
|
100 |
+
with gr.Row():
|
101 |
+
with gr.Column(scale=4):
|
102 |
+
with gr.Column(scale=12):
|
103 |
+
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(
|
104 |
+
container=False)
|
105 |
+
with gr.Column(min_width=32, scale=1):
|
106 |
+
submitBtn = gr.Button("Submit", variant="primary")
|
107 |
+
with gr.Column(scale=1):
|
108 |
+
emptyBtn = gr.Button("Clear History")
|
109 |
+
max_length = gr.Slider(0, 4096, value=2048, step=1.0, label="Maximum length", interactive=True)
|
110 |
+
top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
|
111 |
+
temperature = gr.Slider(0, 1, value=0.95, step=0.01, label="Temperature", interactive=True)
|
112 |
+
|
113 |
+
history = gr.State([])
|
114 |
+
|
115 |
+
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history],
|
116 |
+
show_progress=True)
|
117 |
+
submitBtn.click(reset_user_input, [], [user_input])
|
118 |
+
|
119 |
+
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
120 |
+
|
121 |
+
demo.queue().launch(share=False, inbrowser=True)
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
protobuf
|
2 |
+
transformers==4.27.1
|
3 |
+
cpm_kernels
|
4 |
+
torch>=1.10
|
5 |
+
gradio
|
6 |
+
mdtex2html
|
7 |
+
sentencepiece
|
8 |
+
accelerate
|
utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Dict, Tuple, Union, Optional
|
3 |
+
|
4 |
+
from torch.nn import Module
|
5 |
+
from transformers import AutoModel
|
6 |
+
|
7 |
+
|
8 |
+
def auto_configure_device_map(num_gpus: int) -> Dict[str, int]:
|
9 |
+
# transformer.word_embeddings 占用1层
|
10 |
+
# transformer.final_layernorm 和 lm_head 占用1层
|
11 |
+
# transformer.layers 占用 28 层
|
12 |
+
# 总共30层分配到num_gpus张卡上
|
13 |
+
num_trans_layers = 28
|
14 |
+
per_gpu_layers = 30 / num_gpus
|
15 |
+
|
16 |
+
# bugfix: 在linux中调用torch.embedding传入的weight,input不在同一device上,导致RuntimeError
|
17 |
+
# windows下 model.device 会被设置成 transformer.word_embeddings.device
|
18 |
+
# linux下 model.device 会被设置成 lm_head.device
|
19 |
+
# 在调用chat或者stream_chat时,input_ids会被放到model.device上
|
20 |
+
# 如果transformer.word_embeddings.device和model.device不同,则会导致RuntimeError
|
21 |
+
# 因此这里将transformer.word_embeddings,transformer.final_layernorm,lm_head都放到第一张卡上
|
22 |
+
device_map = {'transformer.word_embeddings': 0,
|
23 |
+
'transformer.final_layernorm': 0, 'lm_head': 0}
|
24 |
+
|
25 |
+
used = 2
|
26 |
+
gpu_target = 0
|
27 |
+
for i in range(num_trans_layers):
|
28 |
+
if used >= per_gpu_layers:
|
29 |
+
gpu_target += 1
|
30 |
+
used = 0
|
31 |
+
assert gpu_target < num_gpus
|
32 |
+
device_map[f'transformer.layers.{i}'] = gpu_target
|
33 |
+
used += 1
|
34 |
+
|
35 |
+
return device_map
|
36 |
+
|
37 |
+
|
38 |
+
def load_model_on_gpus(checkpoint_path: Union[str, os.PathLike], num_gpus: int = 2,
|
39 |
+
device_map: Optional[Dict[str, int]] = None, **kwargs) -> Module:
|
40 |
+
if num_gpus < 2 and device_map is None:
|
41 |
+
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half().cuda()
|
42 |
+
else:
|
43 |
+
from accelerate import dispatch_model
|
44 |
+
|
45 |
+
model = AutoModel.from_pretrained(checkpoint_path, trust_remote_code=True, **kwargs).half()
|
46 |
+
|
47 |
+
if device_map is None:
|
48 |
+
device_map = auto_configure_device_map(num_gpus)
|
49 |
+
|
50 |
+
model = dispatch_model(model, device_map=device_map)
|
51 |
+
|
52 |
+
return model
|
53 |
+
|
54 |
+
|
xiaowo/config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "THUDM/chatglm-6b-int4",
|
3 |
+
"architectures": [
|
4 |
+
"ChatGLMForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_chatglm.ChatGLMConfig",
|
8 |
+
"AutoModel": "modeling_chatglm.ChatGLMForConditionalGeneration",
|
9 |
+
"AutoModelForSeq2SeqLM": "modeling_chatglm.ChatGLMForConditionalGeneration"
|
10 |
+
},
|
11 |
+
"bos_token_id": 130004,
|
12 |
+
"eos_token_id": 130005,
|
13 |
+
"gmask_token_id": 130001,
|
14 |
+
"hidden_size": 4096,
|
15 |
+
"inner_hidden_size": 16384,
|
16 |
+
"layernorm_epsilon": 1e-05,
|
17 |
+
"mask_token_id": 130000,
|
18 |
+
"max_sequence_length": 2048,
|
19 |
+
"model_type": "chatglm",
|
20 |
+
"num_attention_heads": 32,
|
21 |
+
"num_layers": 28,
|
22 |
+
"pad_token_id": 3,
|
23 |
+
"position_encoding_2d": true,
|
24 |
+
"pre_seq_len": 128,
|
25 |
+
"prefix_projection": false,
|
26 |
+
"quantization_bit": 4,
|
27 |
+
"quantization_embeddings": false,
|
28 |
+
"torch_dtype": "float16",
|
29 |
+
"transformers_version": "4.27.1",
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 130528
|
32 |
+
}
|
xiaowo/configuration_chatglm.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
mask_token_id=150000,
|
70 |
+
gmask_token_id=150001,
|
71 |
+
pad_token_id=0,
|
72 |
+
max_sequence_length=2048,
|
73 |
+
inner_hidden_size=16384,
|
74 |
+
position_encoding_2d=True,
|
75 |
+
quantization_bit=0,
|
76 |
+
quantization_embeddings=False,
|
77 |
+
pre_seq_len=None,
|
78 |
+
prefix_projection=False,
|
79 |
+
**kwargs
|
80 |
+
):
|
81 |
+
self.num_layers = num_layers
|
82 |
+
self.vocab_size = vocab_size
|
83 |
+
self.hidden_size = hidden_size
|
84 |
+
self.num_attention_heads = num_attention_heads
|
85 |
+
self.max_sequence_length = max_sequence_length
|
86 |
+
self.layernorm_epsilon = layernorm_epsilon
|
87 |
+
self.inner_hidden_size = inner_hidden_size
|
88 |
+
self.use_cache = use_cache
|
89 |
+
self.bos_token_id = bos_token_id
|
90 |
+
self.eos_token_id = eos_token_id
|
91 |
+
self.pad_token_id = pad_token_id
|
92 |
+
self.mask_token_id = mask_token_id
|
93 |
+
self.gmask_token_id = gmask_token_id
|
94 |
+
self.position_encoding_2d = position_encoding_2d
|
95 |
+
self.quantization_bit = quantization_bit
|
96 |
+
self.quantization_embeddings = quantization_embeddings
|
97 |
+
self.pre_seq_len = pre_seq_len
|
98 |
+
self.prefix_projection = prefix_projection
|
99 |
+
|
100 |
+
super().__init__(
|
101 |
+
pad_token_id=pad_token_id,
|
102 |
+
bos_token_id=bos_token_id,
|
103 |
+
eos_token_id=eos_token_id,
|
104 |
+
**kwargs
|
105 |
+
)
|
xiaowo/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 130004,
|
4 |
+
"eos_token_id": 130005,
|
5 |
+
"pad_token_id": 3,
|
6 |
+
"transformers_version": "4.27.1"
|
7 |
+
}
|
xiaowo/ice_text.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e974d9a69c242ce014c88c2b26089270f6198f3c0b700a887666cd3e816f17e
|
3 |
+
size 2706249
|
xiaowo/modeling_chatglm.py
ADDED
@@ -0,0 +1,1471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
import re
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
15 |
+
from torch.nn.utils import skip_init
|
16 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
17 |
+
|
18 |
+
from transformers.utils import (
|
19 |
+
add_code_sample_docstrings,
|
20 |
+
add_start_docstrings,
|
21 |
+
add_start_docstrings_to_model_forward,
|
22 |
+
)
|
23 |
+
from transformers.modeling_outputs import (
|
24 |
+
BaseModelOutputWithPast,
|
25 |
+
CausalLMOutputWithPast,
|
26 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
27 |
+
)
|
28 |
+
from transformers.modeling_utils import PreTrainedModel
|
29 |
+
from transformers.utils import logging
|
30 |
+
from transformers.generation.logits_process import LogitsProcessor
|
31 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
32 |
+
|
33 |
+
from .configuration_chatglm import ChatGLMConfig
|
34 |
+
|
35 |
+
|
36 |
+
# flags required to enable jit fusion kernels
|
37 |
+
|
38 |
+
if sys.platform != 'darwin':
|
39 |
+
torch._C._jit_set_profiling_mode(False)
|
40 |
+
torch._C._jit_set_profiling_executor(False)
|
41 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
42 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
47 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
48 |
+
|
49 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"THUDM/chatglm-6b",
|
51 |
+
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
56 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
57 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
58 |
+
scores.zero_()
|
59 |
+
scores[..., 5] = 5e4
|
60 |
+
return scores
|
61 |
+
|
62 |
+
|
63 |
+
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
64 |
+
"""Load tf checkpoints in a pytorch model."""
|
65 |
+
try:
|
66 |
+
import re
|
67 |
+
|
68 |
+
import numpy as np
|
69 |
+
import tensorflow as tf
|
70 |
+
except ImportError:
|
71 |
+
logger.error(
|
72 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
73 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
74 |
+
)
|
75 |
+
raise
|
76 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
77 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
78 |
+
# Load weights from TF model
|
79 |
+
init_vars = tf.train.list_variables(tf_path)
|
80 |
+
names = []
|
81 |
+
arrays = []
|
82 |
+
for name, shape in init_vars:
|
83 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
84 |
+
array = tf.train.load_variable(tf_path, name)
|
85 |
+
names.append(name)
|
86 |
+
arrays.append(array)
|
87 |
+
|
88 |
+
for name, array in zip(names, arrays):
|
89 |
+
name = name.split("/")
|
90 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
91 |
+
# which are not required for using pretrained model
|
92 |
+
if any(
|
93 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
94 |
+
for n in name
|
95 |
+
):
|
96 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
97 |
+
continue
|
98 |
+
pointer = model
|
99 |
+
for m_name in name:
|
100 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
101 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
102 |
+
else:
|
103 |
+
scope_names = [m_name]
|
104 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
105 |
+
pointer = getattr(pointer, "weight")
|
106 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
107 |
+
pointer = getattr(pointer, "bias")
|
108 |
+
elif scope_names[0] == "output_weights":
|
109 |
+
pointer = getattr(pointer, "weight")
|
110 |
+
elif scope_names[0] == "squad":
|
111 |
+
pointer = getattr(pointer, "classifier")
|
112 |
+
else:
|
113 |
+
try:
|
114 |
+
pointer = getattr(pointer, scope_names[0])
|
115 |
+
except AttributeError:
|
116 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
117 |
+
continue
|
118 |
+
if len(scope_names) >= 2:
|
119 |
+
num = int(scope_names[1])
|
120 |
+
pointer = pointer[num]
|
121 |
+
if m_name[-11:] == "_embeddings":
|
122 |
+
pointer = getattr(pointer, "weight")
|
123 |
+
elif m_name == "kernel":
|
124 |
+
array = np.transpose(array)
|
125 |
+
try:
|
126 |
+
assert (
|
127 |
+
pointer.shape == array.shape
|
128 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
129 |
+
except AssertionError as e:
|
130 |
+
e.args += (pointer.shape, array.shape)
|
131 |
+
raise
|
132 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
133 |
+
pointer.data = torch.from_numpy(array)
|
134 |
+
return model
|
135 |
+
|
136 |
+
|
137 |
+
class PrefixEncoder(torch.nn.Module):
|
138 |
+
"""
|
139 |
+
The torch.nn model to encode the prefix
|
140 |
+
Input shape: (batch-size, prefix-length)
|
141 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, config):
|
145 |
+
super().__init__()
|
146 |
+
self.prefix_projection = config.prefix_projection
|
147 |
+
if self.prefix_projection:
|
148 |
+
# Use a two-layer MLP to encode the prefix
|
149 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
150 |
+
self.trans = torch.nn.Sequential(
|
151 |
+
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
152 |
+
torch.nn.Tanh(),
|
153 |
+
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
157 |
+
|
158 |
+
def forward(self, prefix: torch.Tensor):
|
159 |
+
if self.prefix_projection:
|
160 |
+
prefix_tokens = self.embedding(prefix)
|
161 |
+
past_key_values = self.trans(prefix_tokens)
|
162 |
+
else:
|
163 |
+
past_key_values = self.embedding(prefix)
|
164 |
+
return past_key_values
|
165 |
+
|
166 |
+
|
167 |
+
@torch.jit.script
|
168 |
+
def gelu_impl(x):
|
169 |
+
"""OpenAI's gelu implementation."""
|
170 |
+
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
171 |
+
(1.0 + 0.044715 * x * x)))
|
172 |
+
|
173 |
+
|
174 |
+
def gelu(x):
|
175 |
+
return gelu_impl(x)
|
176 |
+
|
177 |
+
|
178 |
+
class RotaryEmbedding(torch.nn.Module):
|
179 |
+
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
180 |
+
super().__init__()
|
181 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
182 |
+
inv_freq = inv_freq.half()
|
183 |
+
self.learnable = learnable
|
184 |
+
if learnable:
|
185 |
+
self.inv_freq = torch.nn.Parameter(inv_freq)
|
186 |
+
self.max_seq_len_cached = None
|
187 |
+
else:
|
188 |
+
self.register_buffer('inv_freq', inv_freq)
|
189 |
+
self.max_seq_len_cached = None
|
190 |
+
self.cos_cached = None
|
191 |
+
self.sin_cached = None
|
192 |
+
self.precision = precision
|
193 |
+
|
194 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
195 |
+
error_msgs):
|
196 |
+
pass
|
197 |
+
|
198 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
199 |
+
if seq_len is None:
|
200 |
+
seq_len = x.shape[seq_dim]
|
201 |
+
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
202 |
+
self.max_seq_len_cached = None if self.learnable else seq_len
|
203 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
204 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
205 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
206 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
207 |
+
if self.precision == torch.bfloat16:
|
208 |
+
emb = emb.float()
|
209 |
+
|
210 |
+
# [sx, 1 (b * np), hn]
|
211 |
+
cos_cached = emb.cos()[:, None, :]
|
212 |
+
sin_cached = emb.sin()[:, None, :]
|
213 |
+
if self.precision == torch.bfloat16:
|
214 |
+
cos_cached = cos_cached.bfloat16()
|
215 |
+
sin_cached = sin_cached.bfloat16()
|
216 |
+
if self.learnable:
|
217 |
+
return cos_cached, sin_cached
|
218 |
+
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
219 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
220 |
+
|
221 |
+
def _apply(self, fn):
|
222 |
+
if self.cos_cached is not None:
|
223 |
+
self.cos_cached = fn(self.cos_cached)
|
224 |
+
if self.sin_cached is not None:
|
225 |
+
self.sin_cached = fn(self.sin_cached)
|
226 |
+
return super()._apply(fn)
|
227 |
+
|
228 |
+
def rotate_half(x):
|
229 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
230 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
231 |
+
|
232 |
+
|
233 |
+
@torch.jit.script
|
234 |
+
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
235 |
+
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
236 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
237 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
238 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
239 |
+
return q, k
|
240 |
+
|
241 |
+
|
242 |
+
def attention_fn(
|
243 |
+
self,
|
244 |
+
query_layer,
|
245 |
+
key_layer,
|
246 |
+
value_layer,
|
247 |
+
attention_mask,
|
248 |
+
hidden_size_per_partition,
|
249 |
+
layer_id,
|
250 |
+
layer_past=None,
|
251 |
+
scaling_attention_score=True,
|
252 |
+
use_cache=False,
|
253 |
+
):
|
254 |
+
if layer_past is not None:
|
255 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
256 |
+
key_layer = torch.cat((past_key, key_layer), dim=0)
|
257 |
+
value_layer = torch.cat((past_value, value_layer), dim=0)
|
258 |
+
|
259 |
+
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
260 |
+
seq_len, b, nh, hidden_size = key_layer.shape
|
261 |
+
|
262 |
+
if use_cache:
|
263 |
+
present = (key_layer, value_layer)
|
264 |
+
else:
|
265 |
+
present = None
|
266 |
+
|
267 |
+
query_key_layer_scaling_coeff = float(layer_id + 1)
|
268 |
+
if scaling_attention_score:
|
269 |
+
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
270 |
+
|
271 |
+
# ===================================
|
272 |
+
# Raw attention scores. [b, np, s, s]
|
273 |
+
# ===================================
|
274 |
+
|
275 |
+
# [b, np, sq, sk]
|
276 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
277 |
+
|
278 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
279 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
280 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
281 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
282 |
+
|
283 |
+
matmul_result = torch.zeros(
|
284 |
+
1, 1, 1,
|
285 |
+
dtype=query_layer.dtype,
|
286 |
+
device=query_layer.device,
|
287 |
+
)
|
288 |
+
|
289 |
+
matmul_result = torch.baddbmm(
|
290 |
+
matmul_result,
|
291 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
292 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
293 |
+
beta=0.0,
|
294 |
+
alpha=1.0,
|
295 |
+
)
|
296 |
+
|
297 |
+
# change view to [b, np, sq, sk]
|
298 |
+
attention_scores = matmul_result.view(*output_size)
|
299 |
+
|
300 |
+
if self.scale_mask_softmax:
|
301 |
+
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
302 |
+
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
303 |
+
else:
|
304 |
+
if not (attention_mask == 0).all():
|
305 |
+
# if auto-regressive, skip
|
306 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
307 |
+
dtype = attention_scores.dtype
|
308 |
+
attention_scores = attention_scores.float()
|
309 |
+
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
310 |
+
|
311 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
312 |
+
|
313 |
+
attention_probs = attention_probs.type(dtype)
|
314 |
+
|
315 |
+
# =========================
|
316 |
+
# Context layer. [sq, b, hp]
|
317 |
+
# =========================
|
318 |
+
|
319 |
+
# value_layer -> context layer.
|
320 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
321 |
+
|
322 |
+
# context layer shape: [b, np, sq, hn]
|
323 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
324 |
+
|
325 |
+
# change view [sk, b * np, hn]
|
326 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
327 |
+
|
328 |
+
# change view [b * np, sq, sk]
|
329 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
330 |
+
|
331 |
+
# matmul: [b * np, sq, hn]
|
332 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
333 |
+
|
334 |
+
# change view [b, np, sq, hn]
|
335 |
+
context_layer = context_layer.view(*output_size)
|
336 |
+
|
337 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
338 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
339 |
+
|
340 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
341 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
342 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
343 |
+
|
344 |
+
outputs = (context_layer, present, attention_probs)
|
345 |
+
|
346 |
+
return outputs
|
347 |
+
|
348 |
+
|
349 |
+
def default_init(cls, *args, **kwargs):
|
350 |
+
return cls(*args, **kwargs)
|
351 |
+
|
352 |
+
|
353 |
+
class SelfAttention(torch.nn.Module):
|
354 |
+
def __init__(self, hidden_size, num_attention_heads,
|
355 |
+
layer_id, hidden_size_per_attention_head=None, bias=True,
|
356 |
+
params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
|
357 |
+
if empty_init:
|
358 |
+
init_method = skip_init
|
359 |
+
else:
|
360 |
+
init_method = default_init
|
361 |
+
super(SelfAttention, self).__init__()
|
362 |
+
|
363 |
+
self.layer_id = layer_id
|
364 |
+
self.hidden_size = hidden_size
|
365 |
+
self.hidden_size_per_partition = hidden_size
|
366 |
+
self.num_attention_heads = num_attention_heads
|
367 |
+
self.num_attention_heads_per_partition = num_attention_heads
|
368 |
+
self.position_encoding_2d = position_encoding_2d
|
369 |
+
self.rotary_emb = RotaryEmbedding(
|
370 |
+
self.hidden_size // (self.num_attention_heads * 2)
|
371 |
+
if position_encoding_2d
|
372 |
+
else self.hidden_size // self.num_attention_heads,
|
373 |
+
base=10000,
|
374 |
+
precision=torch.half,
|
375 |
+
learnable=False,
|
376 |
+
)
|
377 |
+
|
378 |
+
self.scale_mask_softmax = None
|
379 |
+
|
380 |
+
if hidden_size_per_attention_head is None:
|
381 |
+
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
382 |
+
else:
|
383 |
+
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
384 |
+
|
385 |
+
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
386 |
+
|
387 |
+
# Strided linear layer.
|
388 |
+
self.query_key_value = init_method(
|
389 |
+
torch.nn.Linear,
|
390 |
+
hidden_size,
|
391 |
+
3 * self.inner_hidden_size,
|
392 |
+
bias=bias,
|
393 |
+
dtype=params_dtype,
|
394 |
+
)
|
395 |
+
|
396 |
+
self.dense = init_method(
|
397 |
+
torch.nn.Linear,
|
398 |
+
self.inner_hidden_size,
|
399 |
+
hidden_size,
|
400 |
+
bias=bias,
|
401 |
+
dtype=params_dtype,
|
402 |
+
)
|
403 |
+
|
404 |
+
@staticmethod
|
405 |
+
def attention_mask_func(attention_scores, attention_mask):
|
406 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
407 |
+
return attention_scores
|
408 |
+
|
409 |
+
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
410 |
+
contiguous_split_chunks=False):
|
411 |
+
"""Split a tensor along its last dimension.
|
412 |
+
Arguments:
|
413 |
+
tensor: input tensor.
|
414 |
+
num_partitions: number of partitions to split the tensor
|
415 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
416 |
+
in memory.
|
417 |
+
"""
|
418 |
+
# Get the size and dimension.
|
419 |
+
last_dim = tensor.dim() - 1
|
420 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
421 |
+
# Split.
|
422 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
423 |
+
# Note: torch.split does not create contiguous tensors by default.
|
424 |
+
if contiguous_split_chunks:
|
425 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
426 |
+
|
427 |
+
return tensor_list
|
428 |
+
|
429 |
+
def forward(
|
430 |
+
self,
|
431 |
+
hidden_states: torch.Tensor,
|
432 |
+
position_ids,
|
433 |
+
attention_mask: torch.Tensor,
|
434 |
+
layer_id,
|
435 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
436 |
+
use_cache: bool = False,
|
437 |
+
output_attentions: bool = False,
|
438 |
+
):
|
439 |
+
"""
|
440 |
+
hidden_states: [seq_len, batch, hidden_size]
|
441 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
442 |
+
"""
|
443 |
+
|
444 |
+
# [seq_len, batch, 3 * hidden_size]
|
445 |
+
mixed_raw_layer = self.query_key_value(hidden_states)
|
446 |
+
|
447 |
+
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
448 |
+
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
449 |
+
self.num_attention_heads_per_partition,
|
450 |
+
3 * self.hidden_size_per_attention_head,
|
451 |
+
)
|
452 |
+
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
453 |
+
|
454 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
455 |
+
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
456 |
+
|
457 |
+
if self.position_encoding_2d:
|
458 |
+
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
459 |
+
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
460 |
+
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
461 |
+
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
462 |
+
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
463 |
+
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
464 |
+
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
465 |
+
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
466 |
+
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
467 |
+
else:
|
468 |
+
position_ids = position_ids.transpose(0, 1)
|
469 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
470 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
471 |
+
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
472 |
+
|
473 |
+
# [seq_len, batch, hidden_size]
|
474 |
+
context_layer, present, attention_probs = attention_fn(
|
475 |
+
self=self,
|
476 |
+
query_layer=query_layer,
|
477 |
+
key_layer=key_layer,
|
478 |
+
value_layer=value_layer,
|
479 |
+
attention_mask=attention_mask,
|
480 |
+
hidden_size_per_partition=self.hidden_size_per_partition,
|
481 |
+
layer_id=layer_id,
|
482 |
+
layer_past=layer_past,
|
483 |
+
use_cache=use_cache
|
484 |
+
)
|
485 |
+
|
486 |
+
output = self.dense(context_layer)
|
487 |
+
|
488 |
+
outputs = (output, present)
|
489 |
+
|
490 |
+
if output_attentions:
|
491 |
+
outputs += (attention_probs,)
|
492 |
+
|
493 |
+
return outputs # output, present, attention_probs
|
494 |
+
|
495 |
+
|
496 |
+
class GEGLU(torch.nn.Module):
|
497 |
+
def __init__(self):
|
498 |
+
super().__init__()
|
499 |
+
self.activation_fn = F.gelu
|
500 |
+
|
501 |
+
def forward(self, x):
|
502 |
+
# dim=-1 breaks in jit for pt<1.10
|
503 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
504 |
+
return x1 * self.activation_fn(x2)
|
505 |
+
|
506 |
+
|
507 |
+
class GLU(torch.nn.Module):
|
508 |
+
def __init__(self, hidden_size, inner_hidden_size=None,
|
509 |
+
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
|
510 |
+
super(GLU, self).__init__()
|
511 |
+
if empty_init:
|
512 |
+
init_method = skip_init
|
513 |
+
else:
|
514 |
+
init_method = default_init
|
515 |
+
self.layer_id = layer_id
|
516 |
+
self.activation_func = activation_func
|
517 |
+
|
518 |
+
# Project to 4h.
|
519 |
+
self.hidden_size = hidden_size
|
520 |
+
if inner_hidden_size is None:
|
521 |
+
inner_hidden_size = 4 * hidden_size
|
522 |
+
self.inner_hidden_size = inner_hidden_size
|
523 |
+
self.dense_h_to_4h = init_method(
|
524 |
+
torch.nn.Linear,
|
525 |
+
self.hidden_size,
|
526 |
+
self.inner_hidden_size,
|
527 |
+
bias=bias,
|
528 |
+
dtype=params_dtype,
|
529 |
+
)
|
530 |
+
# Project back to h.
|
531 |
+
self.dense_4h_to_h = init_method(
|
532 |
+
torch.nn.Linear,
|
533 |
+
self.inner_hidden_size,
|
534 |
+
self.hidden_size,
|
535 |
+
bias=bias,
|
536 |
+
dtype=params_dtype,
|
537 |
+
)
|
538 |
+
|
539 |
+
def forward(self, hidden_states):
|
540 |
+
"""
|
541 |
+
hidden_states: [seq_len, batch, hidden_size]
|
542 |
+
"""
|
543 |
+
|
544 |
+
# [seq_len, batch, inner_hidden_size]
|
545 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
546 |
+
|
547 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
548 |
+
|
549 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
550 |
+
|
551 |
+
return output
|
552 |
+
|
553 |
+
|
554 |
+
class GLMBlock(torch.nn.Module):
|
555 |
+
def __init__(
|
556 |
+
self,
|
557 |
+
hidden_size,
|
558 |
+
num_attention_heads,
|
559 |
+
layernorm_epsilon,
|
560 |
+
layer_id,
|
561 |
+
inner_hidden_size=None,
|
562 |
+
hidden_size_per_attention_head=None,
|
563 |
+
layernorm=LayerNorm,
|
564 |
+
use_bias=True,
|
565 |
+
params_dtype=torch.float,
|
566 |
+
num_layers=28,
|
567 |
+
position_encoding_2d=True,
|
568 |
+
empty_init=True
|
569 |
+
):
|
570 |
+
super(GLMBlock, self).__init__()
|
571 |
+
# Set output layer initialization if not provided.
|
572 |
+
|
573 |
+
self.layer_id = layer_id
|
574 |
+
|
575 |
+
# Layernorm on the input data.
|
576 |
+
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
577 |
+
|
578 |
+
self.position_encoding_2d = position_encoding_2d
|
579 |
+
|
580 |
+
# Self attention.
|
581 |
+
self.attention = SelfAttention(
|
582 |
+
hidden_size,
|
583 |
+
num_attention_heads,
|
584 |
+
layer_id,
|
585 |
+
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
586 |
+
bias=use_bias,
|
587 |
+
params_dtype=params_dtype,
|
588 |
+
position_encoding_2d=self.position_encoding_2d,
|
589 |
+
empty_init=empty_init
|
590 |
+
)
|
591 |
+
|
592 |
+
# Layernorm on the input data.
|
593 |
+
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
594 |
+
|
595 |
+
self.num_layers = num_layers
|
596 |
+
|
597 |
+
# GLU
|
598 |
+
self.mlp = GLU(
|
599 |
+
hidden_size,
|
600 |
+
inner_hidden_size=inner_hidden_size,
|
601 |
+
bias=use_bias,
|
602 |
+
layer_id=layer_id,
|
603 |
+
params_dtype=params_dtype,
|
604 |
+
empty_init=empty_init
|
605 |
+
)
|
606 |
+
|
607 |
+
def forward(
|
608 |
+
self,
|
609 |
+
hidden_states: torch.Tensor,
|
610 |
+
position_ids,
|
611 |
+
attention_mask: torch.Tensor,
|
612 |
+
layer_id,
|
613 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
614 |
+
use_cache: bool = False,
|
615 |
+
output_attentions: bool = False,
|
616 |
+
):
|
617 |
+
"""
|
618 |
+
hidden_states: [seq_len, batch, hidden_size]
|
619 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
620 |
+
"""
|
621 |
+
|
622 |
+
# Layer norm at the begining of the transformer layer.
|
623 |
+
# [seq_len, batch, hidden_size]
|
624 |
+
attention_input = self.input_layernorm(hidden_states)
|
625 |
+
|
626 |
+
# Self attention.
|
627 |
+
attention_outputs = self.attention(
|
628 |
+
attention_input,
|
629 |
+
position_ids,
|
630 |
+
attention_mask=attention_mask,
|
631 |
+
layer_id=layer_id,
|
632 |
+
layer_past=layer_past,
|
633 |
+
use_cache=use_cache,
|
634 |
+
output_attentions=output_attentions
|
635 |
+
)
|
636 |
+
|
637 |
+
attention_output = attention_outputs[0]
|
638 |
+
|
639 |
+
outputs = attention_outputs[1:]
|
640 |
+
|
641 |
+
# Residual connection.
|
642 |
+
alpha = (2 * self.num_layers) ** 0.5
|
643 |
+
hidden_states = attention_input * alpha + attention_output
|
644 |
+
|
645 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
646 |
+
|
647 |
+
# MLP.
|
648 |
+
mlp_output = self.mlp(mlp_input)
|
649 |
+
|
650 |
+
# Second residual connection.
|
651 |
+
output = mlp_input * alpha + mlp_output
|
652 |
+
|
653 |
+
if use_cache:
|
654 |
+
outputs = (output,) + outputs
|
655 |
+
else:
|
656 |
+
outputs = (output,) + outputs[1:]
|
657 |
+
|
658 |
+
return outputs # hidden_states, present, attentions
|
659 |
+
|
660 |
+
|
661 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
662 |
+
"""
|
663 |
+
An abstract class to handle weights initialization and
|
664 |
+
a simple interface for downloading and loading pretrained models.
|
665 |
+
"""
|
666 |
+
|
667 |
+
is_parallelizable = False
|
668 |
+
supports_gradient_checkpointing = True
|
669 |
+
config_class = ChatGLMConfig
|
670 |
+
base_model_prefix = "transformer"
|
671 |
+
_no_split_modules = ["GLMBlock"]
|
672 |
+
|
673 |
+
def __init__(self, *inputs, **kwargs):
|
674 |
+
super().__init__(*inputs, **kwargs)
|
675 |
+
|
676 |
+
def _init_weights(self, module: nn.Module):
|
677 |
+
"""Initialize the weights."""
|
678 |
+
return
|
679 |
+
|
680 |
+
def get_masks(self, input_ids, device):
|
681 |
+
batch_size, seq_length = input_ids.shape
|
682 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
683 |
+
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
|
684 |
+
attention_mask.tril_()
|
685 |
+
for i, context_length in enumerate(context_lengths):
|
686 |
+
attention_mask[i, :, :context_length] = 1
|
687 |
+
attention_mask.unsqueeze_(1)
|
688 |
+
attention_mask = (attention_mask < 0.5).bool()
|
689 |
+
|
690 |
+
return attention_mask
|
691 |
+
|
692 |
+
def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
|
693 |
+
batch_size, seq_length = input_ids.shape
|
694 |
+
if use_gmasks is None:
|
695 |
+
use_gmasks = [False] * batch_size
|
696 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
697 |
+
if self.position_encoding_2d:
|
698 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
699 |
+
for i, context_length in enumerate(context_lengths):
|
700 |
+
position_ids[i, context_length:] = mask_positions[i]
|
701 |
+
block_position_ids = [torch.cat((
|
702 |
+
torch.zeros(context_length, dtype=torch.long, device=device),
|
703 |
+
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
|
704 |
+
)) for context_length in context_lengths]
|
705 |
+
block_position_ids = torch.stack(block_position_ids, dim=0)
|
706 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
707 |
+
else:
|
708 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
709 |
+
for i, context_length in enumerate(context_lengths):
|
710 |
+
if not use_gmasks[i]:
|
711 |
+
position_ids[context_length:] = mask_positions[i]
|
712 |
+
|
713 |
+
return position_ids
|
714 |
+
|
715 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
716 |
+
if isinstance(module, ChatGLMModel):
|
717 |
+
module.gradient_checkpointing = value
|
718 |
+
|
719 |
+
|
720 |
+
CHATGLM_6B_START_DOCSTRING = r"""
|
721 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
722 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
723 |
+
usage and behavior.
|
724 |
+
|
725 |
+
Parameters:
|
726 |
+
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
727 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
728 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
729 |
+
"""
|
730 |
+
|
731 |
+
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
732 |
+
Args:
|
733 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
734 |
+
Indices of input sequence tokens in the vocabulary.
|
735 |
+
|
736 |
+
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
737 |
+
See [`PreTrainedTokenizer.encode`] and
|
738 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
739 |
+
|
740 |
+
[What are input IDs?](../glossary#input-ids)
|
741 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
742 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
743 |
+
|
744 |
+
- 1 for tokens that are **not masked**,
|
745 |
+
- 0 for tokens that are **masked**.
|
746 |
+
|
747 |
+
[What are attention masks?](../glossary#attention-mask)
|
748 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
749 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
750 |
+
|
751 |
+
- 0 corresponds to a *sentence A* token,
|
752 |
+
- 1 corresponds to a *sentence B* token.
|
753 |
+
|
754 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
755 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
756 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
757 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
758 |
+
|
759 |
+
[What are position IDs?](../glossary#position-ids)
|
760 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
761 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
762 |
+
|
763 |
+
- 1 indicates the head is **not masked**,
|
764 |
+
- 0 indicates the head is **masked**.
|
765 |
+
|
766 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
767 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
768 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
769 |
+
than the model's internal embedding lookup matrix.
|
770 |
+
output_attentions (`bool`, *optional*):
|
771 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
772 |
+
tensors for more detail.
|
773 |
+
output_hidden_states (`bool`, *optional*):
|
774 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
775 |
+
more detail.
|
776 |
+
return_dict (`bool`, *optional*):
|
777 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
778 |
+
"""
|
779 |
+
|
780 |
+
|
781 |
+
@add_start_docstrings(
|
782 |
+
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
783 |
+
CHATGLM_6B_START_DOCSTRING,
|
784 |
+
)
|
785 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
786 |
+
"""
|
787 |
+
|
788 |
+
The model can behave as an encoder (with only self-attention) as well
|
789 |
+
as a decoder, in which case a layer of cross-attention is added between
|
790 |
+
the self-attention layers, following the architecture described in [Attention is
|
791 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
792 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
793 |
+
|
794 |
+
To behave as an decoder the model needs to be initialized with the
|
795 |
+
`is_decoder` argument of the configuration set to `True`.
|
796 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
797 |
+
argument and `add_cross_attention` set to `True`; an
|
798 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
799 |
+
"""
|
800 |
+
|
801 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
802 |
+
super().__init__(config)
|
803 |
+
if empty_init:
|
804 |
+
init_method = skip_init
|
805 |
+
else:
|
806 |
+
init_method = default_init
|
807 |
+
# recording parameters
|
808 |
+
self.max_sequence_length = config.max_sequence_length
|
809 |
+
self.hidden_size = config.hidden_size
|
810 |
+
self.params_dtype = torch.half
|
811 |
+
self.num_attention_heads = config.num_attention_heads
|
812 |
+
self.vocab_size = config.vocab_size
|
813 |
+
self.num_layers = config.num_layers
|
814 |
+
self.layernorm_epsilon = config.layernorm_epsilon
|
815 |
+
self.inner_hidden_size = config.inner_hidden_size
|
816 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
817 |
+
self.position_encoding_2d = config.position_encoding_2d
|
818 |
+
self.pre_seq_len = config.pre_seq_len
|
819 |
+
self.prefix_projection = config.prefix_projection
|
820 |
+
|
821 |
+
self.word_embeddings = init_method(
|
822 |
+
torch.nn.Embedding,
|
823 |
+
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
824 |
+
dtype=self.params_dtype
|
825 |
+
)
|
826 |
+
self.gradient_checkpointing = False
|
827 |
+
|
828 |
+
def get_layer(layer_id):
|
829 |
+
return GLMBlock(
|
830 |
+
self.hidden_size,
|
831 |
+
self.num_attention_heads,
|
832 |
+
self.layernorm_epsilon,
|
833 |
+
layer_id,
|
834 |
+
inner_hidden_size=self.inner_hidden_size,
|
835 |
+
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
836 |
+
layernorm=LayerNorm,
|
837 |
+
use_bias=True,
|
838 |
+
params_dtype=self.params_dtype,
|
839 |
+
position_encoding_2d=self.position_encoding_2d,
|
840 |
+
empty_init=empty_init
|
841 |
+
)
|
842 |
+
|
843 |
+
self.layers = torch.nn.ModuleList(
|
844 |
+
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
845 |
+
)
|
846 |
+
|
847 |
+
# Final layer norm before output.
|
848 |
+
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
849 |
+
|
850 |
+
if self.pre_seq_len is not None:
|
851 |
+
for param in self.parameters():
|
852 |
+
param.requires_grad = False
|
853 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
854 |
+
self.prefix_encoder = PrefixEncoder(config)
|
855 |
+
self.dropout = torch.nn.Dropout(0.1)
|
856 |
+
|
857 |
+
# total_params = sum(p.numel() for p in self.parameters())
|
858 |
+
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
859 |
+
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
860 |
+
|
861 |
+
def get_input_embeddings(self):
|
862 |
+
return self.word_embeddings
|
863 |
+
|
864 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
865 |
+
self.word_embeddings = new_embeddings
|
866 |
+
|
867 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
868 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
869 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
870 |
+
past_key_values = past_key_values.view(
|
871 |
+
batch_size,
|
872 |
+
self.pre_seq_len,
|
873 |
+
self.num_layers * 2,
|
874 |
+
self.num_attention_heads,
|
875 |
+
self.hidden_size // self.num_attention_heads
|
876 |
+
)
|
877 |
+
# seq_len, b, nh, hidden_size
|
878 |
+
past_key_values = self.dropout(past_key_values)
|
879 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
880 |
+
# past_key_values = [(v[0], v[1]) for v in past_key_values]
|
881 |
+
return past_key_values
|
882 |
+
|
883 |
+
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
884 |
+
@add_code_sample_docstrings(
|
885 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
886 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
887 |
+
config_class=_CONFIG_FOR_DOC,
|
888 |
+
)
|
889 |
+
def forward(
|
890 |
+
self,
|
891 |
+
input_ids: Optional[torch.LongTensor] = None,
|
892 |
+
position_ids: Optional[torch.LongTensor] = None,
|
893 |
+
attention_mask: Optional[torch.Tensor] = None,
|
894 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
895 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
896 |
+
use_cache: Optional[bool] = None,
|
897 |
+
output_attentions: Optional[bool] = None,
|
898 |
+
output_hidden_states: Optional[bool] = None,
|
899 |
+
return_dict: Optional[bool] = None,
|
900 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
901 |
+
|
902 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
903 |
+
output_hidden_states = (
|
904 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
905 |
+
)
|
906 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
907 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
908 |
+
|
909 |
+
if self.gradient_checkpointing and self.training:
|
910 |
+
if use_cache:
|
911 |
+
logger.warning_once(
|
912 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
913 |
+
)
|
914 |
+
use_cache = False
|
915 |
+
|
916 |
+
if input_ids is not None and inputs_embeds is not None:
|
917 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
918 |
+
elif input_ids is not None:
|
919 |
+
batch_size, seq_length = input_ids.shape[:2]
|
920 |
+
elif inputs_embeds is not None:
|
921 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
922 |
+
else:
|
923 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
924 |
+
|
925 |
+
if inputs_embeds is None:
|
926 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
927 |
+
|
928 |
+
if past_key_values is None:
|
929 |
+
if self.pre_seq_len is not None:
|
930 |
+
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
|
931 |
+
dtype=inputs_embeds.dtype)
|
932 |
+
else:
|
933 |
+
past_key_values = tuple([None] * len(self.layers))
|
934 |
+
|
935 |
+
if attention_mask is None:
|
936 |
+
attention_mask = self.get_masks(
|
937 |
+
input_ids,
|
938 |
+
device=input_ids.device
|
939 |
+
)
|
940 |
+
|
941 |
+
|
942 |
+
if position_ids is None:
|
943 |
+
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
944 |
+
seqs = input_ids.tolist()
|
945 |
+
|
946 |
+
mask_positions, use_gmasks = [], []
|
947 |
+
for seq in seqs:
|
948 |
+
mask_token = gMASK if gMASK in seq else MASK
|
949 |
+
use_gmask = mask_token == gMASK
|
950 |
+
mask_positions.append(seq.index(mask_token))
|
951 |
+
use_gmasks.append(use_gmask)
|
952 |
+
|
953 |
+
position_ids = self.get_position_ids(
|
954 |
+
input_ids,
|
955 |
+
mask_positions=mask_positions,
|
956 |
+
device=input_ids.device,
|
957 |
+
use_gmasks=use_gmasks
|
958 |
+
)
|
959 |
+
|
960 |
+
if self.pre_seq_len is not None and attention_mask is not None:
|
961 |
+
prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
|
962 |
+
attention_mask.device)
|
963 |
+
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
964 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
965 |
+
|
966 |
+
# [seq_len, batch, hidden_size]
|
967 |
+
hidden_states = inputs_embeds.transpose(0, 1)
|
968 |
+
|
969 |
+
presents = () if use_cache else None
|
970 |
+
all_self_attentions = () if output_attentions else None
|
971 |
+
all_hidden_states = () if output_hidden_states else None
|
972 |
+
|
973 |
+
if attention_mask is None:
|
974 |
+
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
975 |
+
else:
|
976 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
977 |
+
|
978 |
+
for i, layer in enumerate(self.layers):
|
979 |
+
|
980 |
+
if output_hidden_states:
|
981 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
982 |
+
layer_past = past_key_values[i]
|
983 |
+
|
984 |
+
if self.gradient_checkpointing and self.training:
|
985 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
986 |
+
layer,
|
987 |
+
hidden_states,
|
988 |
+
position_ids,
|
989 |
+
attention_mask,
|
990 |
+
torch.tensor(i),
|
991 |
+
layer_past,
|
992 |
+
use_cache,
|
993 |
+
output_attentions
|
994 |
+
)
|
995 |
+
else:
|
996 |
+
layer_ret = layer(
|
997 |
+
hidden_states,
|
998 |
+
position_ids=position_ids,
|
999 |
+
attention_mask=attention_mask,
|
1000 |
+
layer_id=torch.tensor(i),
|
1001 |
+
layer_past=layer_past,
|
1002 |
+
use_cache=use_cache,
|
1003 |
+
output_attentions=output_attentions
|
1004 |
+
)
|
1005 |
+
|
1006 |
+
hidden_states = layer_ret[0]
|
1007 |
+
|
1008 |
+
if use_cache:
|
1009 |
+
presents = presents + (layer_ret[1],)
|
1010 |
+
|
1011 |
+
if output_attentions:
|
1012 |
+
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
1013 |
+
|
1014 |
+
# Final layer norm.
|
1015 |
+
hidden_states = self.final_layernorm(hidden_states)
|
1016 |
+
|
1017 |
+
if output_hidden_states:
|
1018 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1019 |
+
|
1020 |
+
if not return_dict:
|
1021 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1022 |
+
|
1023 |
+
return BaseModelOutputWithPast(
|
1024 |
+
last_hidden_state=hidden_states,
|
1025 |
+
past_key_values=presents,
|
1026 |
+
hidden_states=all_hidden_states,
|
1027 |
+
attentions=all_self_attentions,
|
1028 |
+
)
|
1029 |
+
|
1030 |
+
|
1031 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
1032 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
1033 |
+
super().__init__(config)
|
1034 |
+
if empty_init:
|
1035 |
+
init_method = skip_init
|
1036 |
+
else:
|
1037 |
+
init_method = default_init
|
1038 |
+
|
1039 |
+
# self.hidden_size = config.hidden_size
|
1040 |
+
# self.params_dtype = torch.half
|
1041 |
+
# self.vocab_size = config.vocab_size
|
1042 |
+
self.max_sequence_length = config.max_sequence_length
|
1043 |
+
|
1044 |
+
self.position_encoding_2d = config.position_encoding_2d
|
1045 |
+
|
1046 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init)
|
1047 |
+
|
1048 |
+
self.lm_head = init_method(
|
1049 |
+
nn.Linear,
|
1050 |
+
config.hidden_size,
|
1051 |
+
config.vocab_size,
|
1052 |
+
bias=False,
|
1053 |
+
dtype=torch.half
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
self.config = config
|
1057 |
+
|
1058 |
+
self.quantized = False
|
1059 |
+
|
1060 |
+
if self.config.quantization_bit:
|
1061 |
+
self.quantize(self.config.quantization_bit, self.config.quantization_embeddings, use_quantization_cache=True, empty_init=True)
|
1062 |
+
|
1063 |
+
def get_output_embeddings(self):
|
1064 |
+
return self.lm_head
|
1065 |
+
|
1066 |
+
def set_output_embeddings(self, new_embeddings):
|
1067 |
+
self.lm_head = new_embeddings
|
1068 |
+
|
1069 |
+
def _update_model_kwargs_for_generation(
|
1070 |
+
self,
|
1071 |
+
outputs: ModelOutput,
|
1072 |
+
model_kwargs: Dict[str, Any],
|
1073 |
+
is_encoder_decoder: bool = False,
|
1074 |
+
standardize_cache_format: bool = False,
|
1075 |
+
) -> Dict[str, Any]:
|
1076 |
+
# update past_key_values
|
1077 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
1078 |
+
outputs, standardize_cache_format=standardize_cache_format
|
1079 |
+
)
|
1080 |
+
|
1081 |
+
# update attention mask
|
1082 |
+
if "attention_mask" in model_kwargs:
|
1083 |
+
attention_mask = model_kwargs["attention_mask"]
|
1084 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1085 |
+
attention_mask = torch.cat(
|
1086 |
+
[attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
|
1087 |
+
new_attention_mask = attention_mask[:, :, -1:].clone()
|
1088 |
+
new_attention_mask[..., -1] = False
|
1089 |
+
model_kwargs["attention_mask"] = torch.cat(
|
1090 |
+
[attention_mask, new_attention_mask], dim=2
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
# update position ids
|
1094 |
+
if "position_ids" in model_kwargs:
|
1095 |
+
position_ids = model_kwargs["position_ids"]
|
1096 |
+
new_position_id = position_ids[..., -1:].clone()
|
1097 |
+
new_position_id[:, 1, :] += 1
|
1098 |
+
model_kwargs["position_ids"] = torch.cat(
|
1099 |
+
[position_ids, new_position_id], dim=-1
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
return model_kwargs
|
1103 |
+
|
1104 |
+
def prepare_inputs_for_generation(
|
1105 |
+
self,
|
1106 |
+
input_ids: torch.LongTensor,
|
1107 |
+
past: Optional[torch.Tensor] = None,
|
1108 |
+
past_key_values: Optional[torch.Tensor] = None,
|
1109 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1110 |
+
position_ids: Optional[torch.Tensor] = None,
|
1111 |
+
**kwargs
|
1112 |
+
) -> dict:
|
1113 |
+
batch_size, seq_length = input_ids.shape
|
1114 |
+
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
1115 |
+
seqs = input_ids.tolist()
|
1116 |
+
mask_positions, use_gmasks = [], []
|
1117 |
+
for seq in seqs:
|
1118 |
+
mask_token = gMASK if gMASK in seq else MASK
|
1119 |
+
use_gmask = mask_token == gMASK
|
1120 |
+
mask_positions.append(seq.index(mask_token))
|
1121 |
+
use_gmasks.append(use_gmask)
|
1122 |
+
|
1123 |
+
# only last token for input_ids if past is not None
|
1124 |
+
if past is not None or past_key_values is not None:
|
1125 |
+
last_token = input_ids[:, -1].unsqueeze(-1)
|
1126 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1127 |
+
attention_mask = attention_mask[:, :, -1:]
|
1128 |
+
else:
|
1129 |
+
attention_mask = None
|
1130 |
+
if position_ids is not None:
|
1131 |
+
position_ids = position_ids[..., -1:]
|
1132 |
+
else:
|
1133 |
+
context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
|
1134 |
+
if self.position_encoding_2d:
|
1135 |
+
position_ids = torch.tensor(
|
1136 |
+
[[mask_position, seq_length - context_length] for mask_position, context_length in
|
1137 |
+
zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
|
1138 |
+
else:
|
1139 |
+
position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
|
1140 |
+
device=input_ids.device).unsqueeze(-1)
|
1141 |
+
|
1142 |
+
if past is None:
|
1143 |
+
past = past_key_values
|
1144 |
+
return {
|
1145 |
+
"input_ids": last_token,
|
1146 |
+
"past_key_values": past,
|
1147 |
+
"position_ids": position_ids,
|
1148 |
+
"attention_mask": attention_mask
|
1149 |
+
}
|
1150 |
+
else:
|
1151 |
+
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
1152 |
+
logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
|
1153 |
+
attention_mask = None
|
1154 |
+
if attention_mask is None:
|
1155 |
+
attention_mask = self.get_masks(
|
1156 |
+
input_ids,
|
1157 |
+
device=input_ids.device
|
1158 |
+
)
|
1159 |
+
if position_ids is None:
|
1160 |
+
position_ids = self.get_position_ids(
|
1161 |
+
input_ids,
|
1162 |
+
device=input_ids.device,
|
1163 |
+
mask_positions=mask_positions,
|
1164 |
+
use_gmasks=use_gmasks
|
1165 |
+
)
|
1166 |
+
|
1167 |
+
return {
|
1168 |
+
"input_ids": input_ids,
|
1169 |
+
"past_key_values": past,
|
1170 |
+
"position_ids": position_ids,
|
1171 |
+
"attention_mask": attention_mask
|
1172 |
+
}
|
1173 |
+
|
1174 |
+
def forward(
|
1175 |
+
self,
|
1176 |
+
input_ids: Optional[torch.Tensor] = None,
|
1177 |
+
position_ids: Optional[torch.Tensor] = None,
|
1178 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1179 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1180 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1181 |
+
labels: Optional[torch.Tensor] = None,
|
1182 |
+
use_cache: Optional[bool] = None,
|
1183 |
+
output_attentions: Optional[bool] = None,
|
1184 |
+
output_hidden_states: Optional[bool] = None,
|
1185 |
+
return_dict: Optional[bool] = None,
|
1186 |
+
):
|
1187 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1188 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1189 |
+
|
1190 |
+
transformer_outputs = self.transformer(
|
1191 |
+
input_ids=input_ids,
|
1192 |
+
position_ids=position_ids,
|
1193 |
+
attention_mask=attention_mask,
|
1194 |
+
past_key_values=past_key_values,
|
1195 |
+
inputs_embeds=inputs_embeds,
|
1196 |
+
use_cache=use_cache,
|
1197 |
+
output_attentions=output_attentions,
|
1198 |
+
output_hidden_states=output_hidden_states,
|
1199 |
+
return_dict=return_dict,
|
1200 |
+
)
|
1201 |
+
|
1202 |
+
hidden_states = transformer_outputs[0]
|
1203 |
+
|
1204 |
+
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1205 |
+
|
1206 |
+
loss = None
|
1207 |
+
if labels is not None:
|
1208 |
+
lm_logits = lm_logits.to(torch.float32)
|
1209 |
+
|
1210 |
+
# Shift so that tokens < n predict n
|
1211 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1212 |
+
shift_labels = labels[..., 1:].contiguous()
|
1213 |
+
# Flatten the tokens
|
1214 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1215 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1216 |
+
|
1217 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1218 |
+
loss = loss.to(hidden_states.dtype)
|
1219 |
+
|
1220 |
+
if not return_dict:
|
1221 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1222 |
+
return ((loss,) + output) if loss is not None else output
|
1223 |
+
|
1224 |
+
return CausalLMOutputWithPast(
|
1225 |
+
loss=loss,
|
1226 |
+
logits=lm_logits,
|
1227 |
+
past_key_values=transformer_outputs.past_key_values,
|
1228 |
+
hidden_states=transformer_outputs.hidden_states,
|
1229 |
+
attentions=transformer_outputs.attentions,
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
@staticmethod
|
1233 |
+
def _reorder_cache(
|
1234 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1235 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1236 |
+
"""
|
1237 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1238 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1239 |
+
beam_idx at every generation step.
|
1240 |
+
|
1241 |
+
Output shares the same memory storage as `past`.
|
1242 |
+
"""
|
1243 |
+
return tuple(
|
1244 |
+
(
|
1245 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1246 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1247 |
+
)
|
1248 |
+
for layer_past in past
|
1249 |
+
)
|
1250 |
+
|
1251 |
+
def process_response(self, response):
|
1252 |
+
response = response.strip()
|
1253 |
+
response = response.replace("[[训练时间]]", "2023年")
|
1254 |
+
punkts = [
|
1255 |
+
[",", ","],
|
1256 |
+
["!", "!"],
|
1257 |
+
[":", ":"],
|
1258 |
+
[";", ";"],
|
1259 |
+
["\?", "?"],
|
1260 |
+
]
|
1261 |
+
for item in punkts:
|
1262 |
+
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
1263 |
+
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
1264 |
+
return response
|
1265 |
+
|
1266 |
+
@torch.no_grad()
|
1267 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1268 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1269 |
+
if history is None:
|
1270 |
+
history = []
|
1271 |
+
if logits_processor is None:
|
1272 |
+
logits_processor = LogitsProcessorList()
|
1273 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1274 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1275 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1276 |
+
if not history:
|
1277 |
+
prompt = query
|
1278 |
+
else:
|
1279 |
+
prompt = ""
|
1280 |
+
for i, (old_query, response) in enumerate(history):
|
1281 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1282 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1283 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1284 |
+
inputs = inputs.to(self.device)
|
1285 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1286 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1287 |
+
response = tokenizer.decode(outputs)
|
1288 |
+
response = self.process_response(response)
|
1289 |
+
history = history + [(query, response)]
|
1290 |
+
return response, history
|
1291 |
+
|
1292 |
+
@torch.no_grad()
|
1293 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
1294 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1295 |
+
if history is None:
|
1296 |
+
history = []
|
1297 |
+
if logits_processor is None:
|
1298 |
+
logits_processor = LogitsProcessorList()
|
1299 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1300 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1301 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1302 |
+
if not history:
|
1303 |
+
prompt = query
|
1304 |
+
else:
|
1305 |
+
prompt = ""
|
1306 |
+
for i, (old_query, response) in enumerate(history):
|
1307 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1308 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1309 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1310 |
+
inputs = inputs.to(self.device)
|
1311 |
+
for outputs in self.stream_generate(**inputs, **gen_kwargs):
|
1312 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1313 |
+
response = tokenizer.decode(outputs)
|
1314 |
+
response = self.process_response(response)
|
1315 |
+
new_history = history + [(query, response)]
|
1316 |
+
yield response, new_history
|
1317 |
+
|
1318 |
+
@torch.no_grad()
|
1319 |
+
def stream_generate(
|
1320 |
+
self,
|
1321 |
+
input_ids,
|
1322 |
+
generation_config: Optional[GenerationConfig] = None,
|
1323 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1324 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1325 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1326 |
+
**kwargs,
|
1327 |
+
):
|
1328 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1329 |
+
|
1330 |
+
if generation_config is None:
|
1331 |
+
generation_config = self.generation_config
|
1332 |
+
generation_config = copy.deepcopy(generation_config)
|
1333 |
+
model_kwargs = generation_config.update(**kwargs)
|
1334 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1335 |
+
|
1336 |
+
if isinstance(eos_token_id, int):
|
1337 |
+
eos_token_id = [eos_token_id]
|
1338 |
+
|
1339 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1340 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1341 |
+
warnings.warn(
|
1342 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1343 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1344 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1345 |
+
UserWarning,
|
1346 |
+
)
|
1347 |
+
elif generation_config.max_new_tokens is not None:
|
1348 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1349 |
+
if not has_default_max_length:
|
1350 |
+
logger.warn(
|
1351 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1352 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1353 |
+
"Please refer to the documentation for more information. "
|
1354 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1355 |
+
UserWarning,
|
1356 |
+
)
|
1357 |
+
|
1358 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1359 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1360 |
+
logger.warning(
|
1361 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1362 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1363 |
+
" increasing `max_new_tokens`."
|
1364 |
+
)
|
1365 |
+
|
1366 |
+
# 2. Set generation parameters if not already defined
|
1367 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1368 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1369 |
+
|
1370 |
+
logits_processor = self._get_logits_processor(
|
1371 |
+
generation_config=generation_config,
|
1372 |
+
input_ids_seq_length=input_ids_seq_length,
|
1373 |
+
encoder_input_ids=input_ids,
|
1374 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1375 |
+
logits_processor=logits_processor,
|
1376 |
+
)
|
1377 |
+
|
1378 |
+
stopping_criteria = self._get_stopping_criteria(
|
1379 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1380 |
+
)
|
1381 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1382 |
+
|
1383 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1384 |
+
scores = None
|
1385 |
+
while True:
|
1386 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1387 |
+
# forward pass to get next token
|
1388 |
+
outputs = self(
|
1389 |
+
**model_inputs,
|
1390 |
+
return_dict=True,
|
1391 |
+
output_attentions=False,
|
1392 |
+
output_hidden_states=False,
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1396 |
+
|
1397 |
+
# pre-process distribution
|
1398 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1399 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1400 |
+
|
1401 |
+
# sample
|
1402 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1403 |
+
if generation_config.do_sample:
|
1404 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1405 |
+
else:
|
1406 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1407 |
+
|
1408 |
+
# update generated ids, model inputs, and length for next step
|
1409 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1410 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1411 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1412 |
+
)
|
1413 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1414 |
+
|
1415 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1416 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1417 |
+
break
|
1418 |
+
yield input_ids
|
1419 |
+
|
1420 |
+
def quantize(self, bits: int, quantize_embeddings=False, use_quantization_cache=False, empty_init=False, **kwargs):
|
1421 |
+
if bits == 0:
|
1422 |
+
return
|
1423 |
+
|
1424 |
+
from .quantization import quantize, QuantizedEmbedding, QuantizedLinear, load_cpu_kernel
|
1425 |
+
|
1426 |
+
if self.quantized:
|
1427 |
+
if self.device == torch.device("cpu"):
|
1428 |
+
logger.info("Already quantized, reloading cpu kernel.")
|
1429 |
+
load_cpu_kernel(**kwargs)
|
1430 |
+
else:
|
1431 |
+
logger.info("Already quantized.")
|
1432 |
+
return self
|
1433 |
+
|
1434 |
+
self.quantized = True
|
1435 |
+
|
1436 |
+
self.config.quantization_bit = bits
|
1437 |
+
self.config.quantization_embeddings = quantize_embeddings
|
1438 |
+
|
1439 |
+
self.transformer = quantize(self.transformer, bits, use_quantization_cache=use_quantization_cache, empty_init=empty_init, **kwargs)
|
1440 |
+
|
1441 |
+
if self.device == torch.device("cpu"):
|
1442 |
+
dtype = torch.float32
|
1443 |
+
else:
|
1444 |
+
dtype = torch.half
|
1445 |
+
|
1446 |
+
if quantize_embeddings:
|
1447 |
+
logger.info("Applying quantization to embeddings")
|
1448 |
+
self.transformer.word_embeddings = QuantizedEmbedding(
|
1449 |
+
weight_bit_width=bits,
|
1450 |
+
weight_tensor=self.transformer.word_embeddings.weight.to(self.device),
|
1451 |
+
num_embeddings=self.transformer.word_embeddings.num_embeddings,
|
1452 |
+
embedding_dim=self.transformer.word_embeddings.embedding_dim,
|
1453 |
+
dtype=dtype,
|
1454 |
+
empty_init=empty_init,
|
1455 |
+
device=self.transformer.word_embeddings.weight.device,
|
1456 |
+
)
|
1457 |
+
self.lm_head = QuantizedLinear(
|
1458 |
+
weight_bit_width=bits,
|
1459 |
+
weight_tensor=self.lm_head.weight.to(self.device),
|
1460 |
+
bias_tensor=None,
|
1461 |
+
in_features=self.lm_head.in_features,
|
1462 |
+
out_features=self.lm_head.out_features,
|
1463 |
+
bias=False,
|
1464 |
+
quantized_weight=self.transformer.word_embeddings.weight,
|
1465 |
+
quantized_weight_scale=self.transformer.word_embeddings.weight_scale,
|
1466 |
+
dtype=dtype,
|
1467 |
+
empty_init=empty_init,
|
1468 |
+
device=self.lm_head.weight.device,
|
1469 |
+
)
|
1470 |
+
|
1471 |
+
return self
|
xiaowo/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b7736d0582427d706ac424dcfe385990b4ba35f6481b446ae1fcaf041cc5e662
|
3 |
+
size 234882351
|
xiaowo/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c64795fba60fdadcfd8791a3b5dd9fd877febb3c560b99a25aab42b8118421d5
|
3 |
+
size 117441341
|
xiaowo/quantization.py
ADDED
@@ -0,0 +1,533 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Embedding
|
2 |
+
from torch.nn.parameter import Parameter
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
import os
|
6 |
+
import bz2
|
7 |
+
import torch
|
8 |
+
import base64
|
9 |
+
import ctypes
|
10 |
+
import sys
|
11 |
+
from transformers.utils import logging
|
12 |
+
|
13 |
+
from typing import List
|
14 |
+
from functools import partial
|
15 |
+
|
16 |
+
logger = logging.get_logger(__name__)
|
17 |
+
|
18 |
+
try:
|
19 |
+
from cpm_kernels.kernels.base import LazyKernelCModule, KernelFunction, round_up
|
20 |
+
|
21 |
+
|
22 |
+
class Kernel:
|
23 |
+
def __init__(self, code: bytes, function_names: List[str]):
|
24 |
+
self.code = code
|
25 |
+
self._function_names = function_names
|
26 |
+
self._cmodule = LazyKernelCModule(self.code)
|
27 |
+
|
28 |
+
for name in self._function_names:
|
29 |
+
setattr(self, name, KernelFunction(self._cmodule, name))
|
30 |
+
|
31 |
+
|
32 |
+
quantization_code = "$QlpoOTFBWSZTWU9yuJUAQHN//////////f/n/8/n///n//bt4dTidcVx8X3V9FV/92/v4B7/AD5FBQFAAAChSgKpFCFAFVSigUAAAEKhSgUUqgFBKigqVREQAABQBQIANDTTIGI00BkZBkNGE0A0BkBkGQGRkaNAaAGQNBoGgDIAAYIGTI0DQAQAaGmmQMRpoDIyDIaMJoBoDIDIMgMjI0aA0AMgaDQNAGQAAwQMmRoGgAgA0NNMgYjTQGRkGQ0YTQDQGQGQZAZGRo0BoAZA0GgaAMgABggZMjQNABABoaaZAxGmgMjIMhowmgGgMgMgyAyMjRoDQAyBoNA0AZAADBAyZGgaAAmqU1NEgJqnptU/Sn4jRR6J6epk2pqb1Q/SgAPUGgyNNGjQ2SBpoAZAAGg0NB6mgDIAAAAA2oaApSREBNAARhGiYEaEwU8pvImlP0k2aam1GaGqbFNM1MHpTwmkepmyU9R6nqPKekHqNNPUxNGhp6n6p6QaZ6o9TG1GMqcoV9ly6nRanHlq6zPNbnGZNi6HSug+2nPiZ13XcnFYZW+45W11CumhzYhchOJ2GLLV1OBjBjGf4TptOddTSOcVxhqYZMYwZXZZY00zI1paX5X9J+b+f4e+x43RXSxXPOdquiGpduatGyXneN696M9t4HU2eR5XX/kPhP261NTx3JO1Ow7LyuDmeo9a7d351T1ZxnvnrvYnrXv/hXxPCeuYx2XsNmO003eg9J3Z6U7b23meJ4ri01OdzTk9BNO96brz+qT5nuvvH3ds/G+m/JcG/F2XYuhXlvO+jP7U3XgrzPN/lr8Sf1n6j4j7jZs+s/T0tNaNNYzTs12rxjwztHlnire3Nzc3N1wuBwOBwXBvZfoHpD7rFmR99V5vj3aXza3xdBbXMalubTg/jIv5dfAi54Pdc75j4z412n3Npj3Ld/ENm7a3b/Cod6h/ret1/5vn/C+l+gdslMvgPSLJ8d8q+U66fevYn/tW1chleEtNTGlcHCbLRlq0tHzF5tsbbZZfHjjLgZu42XCuC3NrdjTasZGNzgxPIrGqp7r3p7L2p5XjnpPSmTd5XtzqnB6U87zzg1Ol0zd0zsLszxR6lkxp35u6/teL0L0W922cR7Lu1lpL9CsHirzuM2T+BgsyViT6LHcm0/Vr6U/7LGGyJeqTEjt0PHWhF5mCT7R9mtlDwriYv0Tyr/OxYt6qp5r0mPVT0608TqnqMZaarU2nFwrTzzlrs1ed7z1ux60wyr4ydCaTi3enW8x68x0zU7tXSlcmPSW1mGpWJMg4zmPC2lK96tp0OE80y4MfEvnZj8zGluR6b22ki1Ou9V2nCd9xovcPvcYMZYy0lvN60ScZ45vN6yeCeeXFb1lVjnnCar5fwXwE2bzJ4HI1XVPXfXZMm44GUsMpYsmLB65TuVdm0cl0b+i/wGNN66XjeV7zuPpHcnK/juhhjdfId5jMdE5nN0dGmmm2zZs2cexD5n9p/dY352XsvXHaZNWWsmmS1atjR452nYudzvqv2HMRyvNNnlMcDl3R2+yx2uVrBubTW9icHDVtbNXlZm7jma1rM4VurZZd2y6nUau7ZXZ7bVU+mnoOVxZGMrVmvX60605JwmzGZhhhjTWtaaaMaaGTGmNMZasY0iX8VMUl8eepaIrzGSpemWOQyZORk2bNpjUybMmxqYmknCGCFynutfksaZpjTNMaaatM0xsxcGR0sociNqxNSmhhR1ZJPbsn8qyF0t2qH6iYBclclalbtTTcHTDsPaX6rlnElph2Jyumumtynv2Kk8GI7rsvXbIcJgHJOSaSXnnGaI3m87RtVXJOZ/YtgdTE6Wpha6ZlE8ayXkef1fh602r2WwvfMXtMdLlkfnLFdYYwYso+bWqm7yJqHXZGw2nrS5ZanSYnWlxBxMF1V940K2wdrI7R6OYf7DGGamMmTSbRhlS45xmVOumF1EyPCmHrrN8wwZOOrdNtLeMtzFzDlWnfTBxMk2NaXIZHBYxYLD4w8yju0ao65Vz1OIXoS9dLanwCe1PWrYuWMqf1if1z2k2yYfKJ741PDgno1ZQ8DRqvUny3mNoWTzGO6m1DkrJI8JiR5cSd+vZdGOO8nrMoc5+NDUFsMSXaZJeNlMmGLtJsovOsUp7I9S5VojKxF6bTVEelXqlfJobQr3LozSh2Jk7VcrVMfhXqszGWMzNqGhqZY0OadxkyyMssKugZR0KNFXBHlqwmJgTE/BNVMk6ItJXZMR0H47GpXv/DMOvNkmVuaV1PRfEdxuqc7Hcd+ZV/zTLaRxWk0nl9CdCeM6mn5rstHIBcpiuwmUZXeq81DacHI2rmrZ5SuE5mOZd6LQrZg9mx32TprA8BMo5jKN6yLTCi3WzQaZSuhzTtM1fUTGVpG8Tw+KXI0tjEpiWxtLYynOlktSbVlaI5kxP8TDH8kx50xoxi5KcA4pcja8KWLRlO/Ks6q06ergnvm1ca3Tq8Uw7LTUsmWyctXPWmpitl/uvGcWTGXGuAXDfhqazGmjkxcJW5hMMMMpYsXl2TZYtVOddG3XCarUt6Ptq9CZXSNzyuRzqRZOjsxdBbFVz6OA5HI43r1jityVlVpVkxmOsyaYWE1NTGq1sOVh36mHMcxtSvcy70edG0ZGR3I1Go1GRlV7mWWo1G0ZGRqlvH40l7o4m5xMWLLLYyNjnqc8556mdPqLJ31n/1nWOncxzG1tizrHs/Z+d2vP/B/l8wdJ6rHUn2nbbDq4p6htFtYzMMMTaZis1K5GKzGNmxhmUx2DDlZ/qNnIx41xnaMfCZWYaZWtNLTNW8ND4Fw1MyZOCdM428suKG1ehW8TesOydg7J+YYcD4cYR+8dFK6M4E3HM9ZfRNNL+Sn6rsl4DsrDl2HpPCnfxjGXtbZtYys1ttlyJ4T+BvexjGWRjMszK4Jpc77D3GyuVD7q0+G8m9G+2+rGm7cOR2y7FdtY2XUYx/oNlfRYxhMYyYZkyyg55enna9Kt/FFi6GMMwYwdwxWgxGMLKYmUyGExTKMZkMFhkymKuh0NOBNnBu+23LdwDoZYYzGGMxtORaTU1pjTGWTTGGtMrNWUsyyTTLLG1qy2ZjbK2DBllWqxMtBMaYZQmcE7zvvRcTkclUwdkxTaSdyySt/7fpL+T1v516Ji97fwr5JbLu305zMn5+GMTTZ9F+y7ExwmGVfG44yxn3dLv6l5i+Wth1jCrDq21nW9LqvvDzz3Vf3LLH/O/32TJ/erx3bXftO4eF+G956D952K/An4NfvOpjFjExjevP/UmE0fIoZXx6/w6lX/no3D0bLt+ixjieBM6ksRd0yB4Lt2SwYNE+gd1detlZWUnpiZfGfFaK+4PyCa/v18V8X75pe9fLXzp7l3VjF76vWZmHwGz1IZNWT7b8yddJ4q5kyrVdfru6atWc7bVYztL9Jf4GXvT+Y8m9/YsXP6H018a8D4XVOqvfzqeR+6yZOD8dPv0+U7/q5Pl+2dNb0MjzGVH5p6MNQ7cOWvw62U9aHE8DprDek+McLyvDz+te+9Zhq5+YTruufMcWMabqysTmZVWjKPfnK0wyVcrsuhjZRdLkHNvD72b9abriOSGIxiLixMOoalNPXzy+wT/tf+U6HHONfsz+xe8ufHBdQWWGWLA9if0rsnmrxK5LvRZQeWsTCsrmOYy8VteVfuRfcVTtDLItLIsMYxZLdU/DbtSemxF6Z6Zo5WBXE4tFdCyVMMXMTEMZXVlS6Xec2T4e0tHsRcEuWshcJ2YsNF5rUx1E8ifCq6Z+ZP7qdCeu/aTwFd53l16/o0NOw6O3dLavP4Hbi4RdmuDk6DoYaninC0+o4uZjbJ7Rxeu0/FbuFg+q7DVS6fQe0rZ6NDGUNNU6DEqOaLTicKnYZMnBWruljQxoaS3dZhocDge0bSTyOvdAbG5hxe2xji7E/L55xX13wWNDi6HCekcFxfCPGxY0MXC+s7afWaMdDyjyr+o8Rudm/NabOZvdl274zH4f5XK9z6On1Pe/K5TdPAslg77BjuO6Y3eO7GqvOPG/stknp1leyvLL0Z7bl9I4noMvLkzytLhWYzrOZzLXCORe028rORzOg4N/L0HlMOQ3Pgmnbb6KczlabORpu980q37TBqRu0/p3PO6234Bl03Ynuz+9W7gnsEcmvYaYY3aMYY0wx3pYd+ujsXauWdaY5Xkbtl23fPzFHiDB/QMo0yFjBllYxTQYYyxkrwn7JufwJ/PfgJ+C83X69ni6zvXcnyXabv0ncbLwsceS+RNlyN2mnneJtX0ngYO0+e+0+UnA+Wch3ji8hj5an4h+i6XBySU4n+R0roVcbw5yvHrmr4Yw8Y7x6c+9POPYHI5HI5HI5HI5HGXGww4nE4nrVyOR8XeqPEO7PLOiukYa3Novk5hV4cdtYZLI93e+uxff2jRo0aNGjRo0aNG1bVtW1dy3m83m8+tQ5ZzHw3nObwOu8La9Rc1dtkdS8A3eTk823tnktXWlxN6Oixe06zrN70Isd9jiOgZFq9yfkPqP/SLhN2Myl8jDM43bl1nbcb4cO57jlh8Jow6pzXZdL4dyODTuuhu77FyO27DdwdRxmvO+O+3N2+BdqyTwLHVczDVY4UPE4O66/ZO2cx1LFzVdSXtF7G4HMbrauOHRw6c8FdZ5m9fHZHYZXfTlZquyynSyTTKke6vcffSD9pzPA/G7n7jxPmuhc1DHMynPMrGL6AdewYmwu5ko+UUyTwrMv27rPH1v1nGqd87+p6N6LU8k3NEng53xXyHS97+44OSg/sy/hn+Se6yfYNjW0/uTgP+PvWYzLMmjhcLB/gGpri6H83/84eUXWT6T9Hsv7785z/7z4icpW+zfXypuR7rx/gMdZb1/wC678pcs8/2a3mDitGHxl9mfPlll5MafWWqxk/eYuTDgcNMzDGWLWvsuglNxs53GtN6uWpktlW1tZZYcuinMMWmnNnJydze3b2Y1McBxrBkXw799izLMZZYyy0TkbsGM4p03S2uVu5s/XXUdSdec6smVxZYYGpVmT8A+8ajuEyV5FatkvVru2x6uxGXXbH4A+jvgP4GMYy3iPLXzq/6z65+E005ey+cwMZD3fZcqc6xpjTFjQ0P3U+e++cPYmTIwj0nrK5NPTfl3WvpfLtXDcb2HQMudYOxFXQBor4L4T6vrOauFctYXJQ++NUWmJe5bmx1jDiZS1dTqWxo4GR8jm3fttpmPHppk9PEyv4/y8/sO07XacOmcqc0x2Vi9BvNJvN5oW8x4mOsydpidRxMYJPx06m1bqPzq9KtK8sxXNXFodD/+MYYaJTLwOhc9brCsV18oOR1i4tXChyTkq4lf4y1Ke+9axjDHqs1mfBbMXuP4Hzi+X7t8vzv7bHerrUPgPCxhjre4fXdfLNtNM+Jd+Zdh8xd8wP87uNPoPgv4W7/5P2BuxfsMabNnMnza+54Pdi5U671GPZY8CehX8Voeoo7FHpkeEc6715FwHZrIrUrHaviPUbPZHND+IhczrP6FcYvhOZ0Di/ETt0OI+YwNWR9r7tpf6WDeZKZDB1+z2IthOl1mPyb5FluvEx9h9d0NnM0Y1XPFkWIsk1WotJ0PBMmkvjvQTd0e71tfeV+8r8lQ/tpzpsmxJ+InrI/dj2UajUajVTUajatRqNRtGo1Go1Go4wjeMpZFMVV9CHbofPraLsJ3JpWV2XOoanCuFky4y3PPNxucK2uKC1Lbdb1eo+m5XomN6HfeZsabHLHRX/K+offtNGGmHWctcVcG44MdSqsOLY9VzX+Zxfxn2HPdWTpzWvkrtJ8M5zorrKcquRytJ5N5DZmcaW02l76nWO+BqPXm1A2Ry/0q71dH/mqrqeFjkYxjEXtsX8qubTk67rGycyqsdm4tZx5D6D5hhi0waaWmiaMP81Yjii5qxPlPuU/GfTL1Y5E6Jyfiq63qTa39A4J0sOGDgO9WF9bOXl0XfPRbsY2bPNKPy1YrFYrFYmRhhlTIyMjJWJYZHXuCXI8OoXsvfljGLFicNifpp2XunoPiG1wtx3p1Tah+/DD66OnVtVXP9rKbVxOnL0tR/rHtqB5UDErUVcl11D4qqvjpOcxX7armUNJB3LpW6bxVvD08e8h3odKKvyCFZBdSh2FVcST9xV3n3T8t1j7Kr9qgrqXg+13Pt5U7JCvFXVIV1YG5lRhkVYZJYYDDD4KOIMoHCp26WS8GB7uBh2zIdgq/PKyInjV2STShuoapUdCpX1yTwqq/z1VvET7Kh5nVPkO8YyxjLt2MaaMmWTLQvx3qnzltnXW0p2jxgbEtSny/Osv8Y9pLMXYoHVPAhkVdWVeODhR6q9/Sxe2liwwZWMVvFXfRkeIDxAePUPIrdJ4ey6yquzH+PD/bUOWAu05qVHtFd8rrKHSoeNIOUqrYr3FXyToqfYJgwmJdKpXXOwYYegNNGMzfZPp/t3t/DVs4zjNTN61rRqaWaa4NYbRjTa0tWwy2Y2tGN8ZO8ofNKq4j9SL7I+cSm4/6ovLV5HNXLI0jJidwrtk6ynCaP6Z++GjRlWS3tLeW129Mi9evxU9mtz6s5J3Z7M2ngTgnKvmpomxpaLCzPfmx0JWE+m3NLDDGOX47RctdYYNK5jakdqLkRlI39n590T5zctGSwwZZDJj6kW8XSi6ot2MmWWJ0DUT3nuvebBudScjZ79g8cWJ8av0k+/bE5WKd5MdbFpbDVMxu1DVMmtNZGJvq1mtRbn6M+g/kP0FwDwr7quZs7xosNGpbscyxhhd9TyJyFwbLcxlTasg75vW7TsV5K7ji44XPMMrdoj+Y3rT0Hie62nlYV/pwczzOmdLqLhYkzGMzCZWGMQzGMSsZYY6Di1t4nlJ+Em63mJxrVLxPbYxNEdgc1dU2iOKyoYYWjNrEeHTYybVk0atSa7ehuwsWMWTqn1TrnS6hYsi71d1+s+k+ic70e20fzE/VaTdxT9ZtU4GIXdeNx3X77guYYfpHeTQjaMX6brOu4OY4K7Y2d9mbHarI5ox3p4GpJ2Vd/Tst60f7j999pppjR+Q/Qf8J/VaORs3cji7FfFuN61+ui9s8hix1OCh5KGVV23BPXvZfz3CLyHpix+exi8z/KnCnosY2eunor+cxyPO/xJ0vKey9OvE9VjqaYu0x3Z3jd6o2b1T12D+F8l232lwaaacD5LE8LBxu7WTlbWraWpew8Xexjel3E+wWD4APITdNqR8F3R3T0lunCQ4GaE9R37DxeCYfcHi4xci5ovKfxVs55y2hf+65E/Xdp6jR5nrebTmi5incpkyOjs50JvrZwstbbW6kfuuQw+2mykf/EXNFzxfKTrxew929TR6bWnGL//F3JFOFCQT3K4lQ"
|
33 |
+
|
34 |
+
kernels = Kernel(
|
35 |
+
bz2.decompress(base64.b64decode(quantization_code)),
|
36 |
+
[
|
37 |
+
"int4WeightCompression",
|
38 |
+
"int4WeightExtractionFloat",
|
39 |
+
"int4WeightExtractionHalf",
|
40 |
+
"int8WeightExtractionFloat",
|
41 |
+
"int8WeightExtractionHalf",
|
42 |
+
],
|
43 |
+
)
|
44 |
+
except Exception as exception:
|
45 |
+
kernels = None
|
46 |
+
logger.warning("Failed to load cpm_kernels:", exception)
|
47 |
+
|
48 |
+
|
49 |
+
class W8A16Linear(torch.autograd.Function):
|
50 |
+
@staticmethod
|
51 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width):
|
52 |
+
ctx.inp_shape = inp.size()
|
53 |
+
ctx.weight_bit_width = weight_bit_width
|
54 |
+
out_features = quant_w.size(0)
|
55 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
56 |
+
weight = extract_weight_to_half(quant_w, scale_w, weight_bit_width)
|
57 |
+
ctx.weight_shape = weight.size()
|
58 |
+
output = inp.mm(weight.t())
|
59 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
60 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
61 |
+
|
62 |
+
@staticmethod
|
63 |
+
def backward(ctx, grad_output: torch.Tensor):
|
64 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
65 |
+
weight = extract_weight_to_half(quant_w, scale_w, ctx.weight_bit_width)
|
66 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
67 |
+
grad_input = grad_output.mm(weight)
|
68 |
+
grad_weight = grad_output.t().mm(inp)
|
69 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
70 |
+
|
71 |
+
|
72 |
+
class W8A16LinearCPU(torch.autograd.Function):
|
73 |
+
@staticmethod
|
74 |
+
def forward(ctx, inp: torch.Tensor, quant_w: torch.Tensor, scale_w: torch.Tensor, weight_bit_width,
|
75 |
+
quantization_cache=None):
|
76 |
+
ctx.inp_shape = inp.size()
|
77 |
+
ctx.weight_bit_width = weight_bit_width
|
78 |
+
out_features = quant_w.size(0)
|
79 |
+
inp = inp.contiguous().view(-1, inp.size(-1))
|
80 |
+
weight = extract_weight_to_float(quant_w, scale_w, weight_bit_width, quantization_cache=quantization_cache)
|
81 |
+
ctx.weight_shape = weight.size()
|
82 |
+
output = inp.mm(weight.t())
|
83 |
+
ctx.save_for_backward(inp, quant_w, scale_w)
|
84 |
+
return output.view(*(ctx.inp_shape[:-1] + (out_features,)))
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def backward(ctx, grad_output: torch.Tensor):
|
88 |
+
inp, quant_w, scale_w = ctx.saved_tensors
|
89 |
+
weight = extract_weight_to_float(quant_w, scale_w, ctx.weight_bit_width)
|
90 |
+
grad_output = grad_output.contiguous().view(-1, weight.size(0))
|
91 |
+
grad_input = grad_output.mm(weight)
|
92 |
+
grad_weight = grad_output.t().mm(inp)
|
93 |
+
return grad_input.view(ctx.inp_shape), grad_weight.view(ctx.weight_shape), None, None
|
94 |
+
|
95 |
+
|
96 |
+
default_cpu_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "quantization_kernels.c")
|
97 |
+
default_cpu_kernel_code = "QlpoOTFBWSZTWXLbSoQAAgzbgERwQXxmTwAAr/ff3kABt0Q2oRVT0hpo9RtEAAAAyBEiSQ9EGjQGQAAAwANGhowjJoNGmgMEUplMTNSMJ5TQaDJpsoMyRMj8P4mZzFSVVwqSXG8GG7MlVwiToYEQwVD7noBxMhNfkeZYtYFtbgOBUSIGtIQjhNHCEnPJsadhb3yBmRIOD3TeAtNLSaU5GgvKUBWSNuuOIHmVt0YhW6rsmDMDUjeUJGJ64R1Jm5lrh0Aa0tKjhFwPdWcGogxLDSXPWQUWTM8Sd3Qz1HMYNxx3HMeiNqNo4jeRDEfZ3gUSHIcU/heomq0vEzL1Msz5KKGxH8FrNOYw3KaxdqaEmNHYMxJFgQbR0DyRknL2L4kwUSxKRdhjRpEtUqilVfggFL1klaMS3PPRDfNqbBOPWO7m4JTVGhS9QTBDDJaEbLbrUQNB+IpJSKQbG5SZZ5gkwJEhJ3aYKJipZ/i7kinChIOW2lQg"
|
98 |
+
default_cpu_parallel_kernel_code_path = os.path.join(os.path.dirname(os.path.abspath(__file__)),
|
99 |
+
"quantization_kernels_parallel.c")
|
100 |
+
default_cpu_parallel_kernel_code = "QlpoOTFBWSZTWUzax5EAALXbgERwSX1mTwAAr/ff3kACNyXUbZYwBpoaNGIyAaADQwRSaVP9QoMg0A2oAPU0AEUkU9GaaKMaQB6gA09T1ARRKnpk0niaJkaaNDJ6g0DTIKVKfZ/g6v1Kem5LJLa0WmkukkuCIHUqWbtJGJMsCSQFiPEIYHgBIZDzR8R6REbYxIqD2Cu7lMkFoPu6LmHeOAy0GF83Tc40jgmTs4HnCe60QfJa2bDBZ0Y1lhgbiZjW8SNsAKCk42UOEdjWN3KoiCIYeQUCCKWIyHewhtSoInLKSG22l4jKM2ZDCVKtBm3OTYBl3jsVqMImtj7PQw7xKxLXQzwgJaPPgW1fRhrvPJICl4YFDYfNbkbBh5JDgrazFml50xEQQwQUjxNwE0IDSofLzSg7UNVKn+Rr1KErzBHUxBqdHRlXzqYsIa5K9Y0UuE2ugw3g5KYofm7AaGNTzJSMhcchhxdaU4JZ0F1UNgQ8XcGDguypqYza8yFaEoGgNRcLej+g2t0feGKFE5OY2PFluQ3q4HgycxlfvzHqo0KcM0JI8OKXtzayJFgsqC1NdUQVu8rChnA6FO3MFyGOoC9KO8ITPpYM5pRqTlczFkLES/4u5IpwoSCZtY8i"
|
101 |
+
|
102 |
+
cpu_kernels = None
|
103 |
+
|
104 |
+
|
105 |
+
class CPUKernel:
|
106 |
+
def __init__(self, kernel_file="", source_code=default_cpu_kernel_code_path, compile_parallel_kernel=None,
|
107 |
+
parallel_num=None):
|
108 |
+
self.load = False
|
109 |
+
self.int8WeightExtractionFloat = None
|
110 |
+
self.int4WeightExtractionFloat = None
|
111 |
+
self.int4WeightCompression = None
|
112 |
+
self.SetNumThreads = lambda x: x
|
113 |
+
|
114 |
+
try:
|
115 |
+
if not os.path.exists(default_cpu_kernel_code_path):
|
116 |
+
with open(default_cpu_kernel_code_path, "w", encoding="utf-8") as file:
|
117 |
+
code = default_cpu_kernel_code
|
118 |
+
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
|
119 |
+
file.write(cpu_quantization_code)
|
120 |
+
|
121 |
+
if not os.path.exists(default_cpu_parallel_kernel_code_path):
|
122 |
+
with open(default_cpu_parallel_kernel_code_path, "w", encoding="utf-8") as file:
|
123 |
+
code = default_cpu_parallel_kernel_code
|
124 |
+
cpu_quantization_code = bz2.decompress(base64.b64decode(code)).decode()
|
125 |
+
file.write(cpu_quantization_code)
|
126 |
+
|
127 |
+
except Exception as ex:
|
128 |
+
print("Error when generating default cpu kernel code(can be ignored when using custom kernels).")
|
129 |
+
|
130 |
+
if compile_parallel_kernel is None:
|
131 |
+
compile_parallel_kernel = bool(int(os.cpu_count()) >= 4)
|
132 |
+
|
133 |
+
if compile_parallel_kernel and source_code == default_cpu_kernel_code_path:
|
134 |
+
source_code = default_cpu_parallel_kernel_code_path
|
135 |
+
|
136 |
+
kernels = None
|
137 |
+
|
138 |
+
if (not kernel_file) or (not os.path.exists(kernel_file)):
|
139 |
+
print("No compiled kernel found.")
|
140 |
+
try:
|
141 |
+
if os.path.exists(source_code):
|
142 |
+
print("Compiling kernels :", source_code)
|
143 |
+
kernel_file = source_code[:-2] + ".so"
|
144 |
+
|
145 |
+
if compile_parallel_kernel:
|
146 |
+
if sys.platform != 'darwin':
|
147 |
+
compile_command = "gcc -O3 -fPIC -pthread -fopenmp -std=c99 {} -shared -o {}".format(
|
148 |
+
source_code, kernel_file)
|
149 |
+
else:
|
150 |
+
compile_command = "clang -O3 -fPIC -pthread -Xclang -fopenmp -lomp -std=c99 {} -shared -o {}".format(
|
151 |
+
source_code, kernel_file)
|
152 |
+
print("Compiling", compile_command)
|
153 |
+
exit_state = os.system(compile_command)
|
154 |
+
if not exit_state:
|
155 |
+
try:
|
156 |
+
kernels = ctypes.cdll.LoadLibrary(kernel_file)
|
157 |
+
print("Load kernel :", kernel_file)
|
158 |
+
except:
|
159 |
+
kernels = None
|
160 |
+
print("Load parallel cpu kernel failed, using default cpu kernel code:")
|
161 |
+
import traceback
|
162 |
+
exception = traceback.format_exc()
|
163 |
+
print(exception)
|
164 |
+
else:
|
165 |
+
print("Compile default cpu kernel failed, using default cpu kernel code.")
|
166 |
+
|
167 |
+
if kernels is None: # adjust config, use default cpu kernel
|
168 |
+
compile_parallel_kernel = False
|
169 |
+
source_code = default_cpu_kernel_code_path
|
170 |
+
kernel_file = source_code[:-2] + ".so"
|
171 |
+
|
172 |
+
if kernels is None:
|
173 |
+
compile_command = "gcc -O3 -fPIC -std=c99 {} -shared -o {}".format(source_code, kernel_file)
|
174 |
+
print("Compiling", compile_command)
|
175 |
+
exit_state = os.system(compile_command)
|
176 |
+
if not exit_state:
|
177 |
+
try:
|
178 |
+
kernels = ctypes.cdll.LoadLibrary(kernel_file)
|
179 |
+
print("Load kernel :", kernel_file)
|
180 |
+
except:
|
181 |
+
kernels = None
|
182 |
+
print("Load default cpu kernel failed:")
|
183 |
+
import traceback
|
184 |
+
exception = traceback.format_exc()
|
185 |
+
print(exception)
|
186 |
+
else:
|
187 |
+
print("Compile default cpu kernel failed.")
|
188 |
+
else:
|
189 |
+
print("Kernel source code not found.")
|
190 |
+
return
|
191 |
+
except:
|
192 |
+
print("Failed to build cpu kernel:")
|
193 |
+
import traceback
|
194 |
+
exception = traceback.format_exc()
|
195 |
+
print(exception)
|
196 |
+
return
|
197 |
+
else:
|
198 |
+
try:
|
199 |
+
kernels = ctypes.cdll.LoadLibrary(kernel_file)
|
200 |
+
print("Load kernel :", kernel_file)
|
201 |
+
except:
|
202 |
+
kernels = None
|
203 |
+
print("Load custom cpu kernel failed:")
|
204 |
+
import traceback
|
205 |
+
exception = traceback.format_exc()
|
206 |
+
print(exception)
|
207 |
+
|
208 |
+
if kernels is not None:
|
209 |
+
self.int8WeightExtractionFloat = kernels.extract_int8_weight_to_float
|
210 |
+
self.int4WeightExtractionFloat = kernels.extract_int4_weight_to_float
|
211 |
+
self.int4WeightCompression = kernels.compress_int4_weight
|
212 |
+
if compile_parallel_kernel:
|
213 |
+
try:
|
214 |
+
self.SetNumThreads = kernels.set_num_threads
|
215 |
+
except:
|
216 |
+
print("No set_num_threads() found in kernel.")
|
217 |
+
self.load = True
|
218 |
+
else:
|
219 |
+
print("Failed to load kernel.")
|
220 |
+
return
|
221 |
+
|
222 |
+
if compile_parallel_kernel:
|
223 |
+
if parallel_num is None:
|
224 |
+
parallel_num = max(os.cpu_count() // 2, 1)
|
225 |
+
print("Setting CPU quantization kernel threads to", parallel_num)
|
226 |
+
if parallel_num < 4:
|
227 |
+
print("Parallel kernel is not recommended when parallel num < 4.")
|
228 |
+
self.SetNumThreads(parallel_num)
|
229 |
+
|
230 |
+
self.parallel_num = parallel_num
|
231 |
+
|
232 |
+
|
233 |
+
def compress_int4_weight(weight: torch.Tensor): # (n, m)
|
234 |
+
"""compress weight on cpu or cuda to int4"""
|
235 |
+
if weight.device == torch.device("cpu"):
|
236 |
+
assert isinstance(cpu_kernels, CPUKernel)
|
237 |
+
n, m = weight.size(0), weight.size(1)
|
238 |
+
assert m % 2 == 0
|
239 |
+
m = m // 2
|
240 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cpu")
|
241 |
+
cpu_kernels.int4WeightCompression(
|
242 |
+
ctypes.c_void_p(weight.data_ptr()),
|
243 |
+
ctypes.c_void_p(out.data_ptr()),
|
244 |
+
ctypes.c_int32(n),
|
245 |
+
ctypes.c_int32(m)
|
246 |
+
)
|
247 |
+
return out
|
248 |
+
else:
|
249 |
+
with torch.cuda.device(weight.device):
|
250 |
+
n, m = weight.size(0), weight.size(1)
|
251 |
+
assert m % 2 == 0
|
252 |
+
m = m // 2
|
253 |
+
out = torch.empty(n, m, dtype=torch.int8, device="cuda")
|
254 |
+
stream = torch.cuda.current_stream()
|
255 |
+
|
256 |
+
gridDim = (n, 1, 1)
|
257 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
258 |
+
|
259 |
+
kernels.int4WeightCompression(
|
260 |
+
gridDim,
|
261 |
+
blockDim,
|
262 |
+
0,
|
263 |
+
stream,
|
264 |
+
[ctypes.c_void_p(weight.data_ptr()), ctypes.c_void_p(out.data_ptr()), ctypes.c_int32(n),
|
265 |
+
ctypes.c_int32(m)],
|
266 |
+
)
|
267 |
+
return out
|
268 |
+
|
269 |
+
|
270 |
+
def extract_weight_to_half(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int):
|
271 |
+
if source_bit_width == 8:
|
272 |
+
func = kernels.int8WeightExtractionHalf
|
273 |
+
elif source_bit_width == 4:
|
274 |
+
func = kernels.int4WeightExtractionHalf
|
275 |
+
else:
|
276 |
+
assert False, "Unsupported bit-width"
|
277 |
+
|
278 |
+
with torch.cuda.device(weight.device):
|
279 |
+
n, m = weight.size(0), weight.size(1)
|
280 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.half, device="cuda")
|
281 |
+
stream = torch.cuda.current_stream()
|
282 |
+
|
283 |
+
gridDim = (n, 1, 1)
|
284 |
+
blockDim = (min(round_up(m, 32), 1024), 1, 1)
|
285 |
+
|
286 |
+
func(
|
287 |
+
gridDim,
|
288 |
+
blockDim,
|
289 |
+
0,
|
290 |
+
stream,
|
291 |
+
[
|
292 |
+
ctypes.c_void_p(weight.data_ptr()),
|
293 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
294 |
+
ctypes.c_void_p(out.data_ptr()),
|
295 |
+
ctypes.c_int32(n),
|
296 |
+
ctypes.c_int32(m),
|
297 |
+
],
|
298 |
+
)
|
299 |
+
return out
|
300 |
+
|
301 |
+
|
302 |
+
def extract_weight_to_float(weight: torch.Tensor, scale_list: torch.Tensor, source_bit_width: int,
|
303 |
+
quantization_cache=None):
|
304 |
+
"""extract weight on cpu to float32"""
|
305 |
+
if source_bit_width == 8:
|
306 |
+
func = cpu_kernels.int8WeightExtractionFloat
|
307 |
+
elif source_bit_width == 4:
|
308 |
+
func = cpu_kernels.int4WeightExtractionFloat
|
309 |
+
else:
|
310 |
+
assert False, "Unsupported bit-width"
|
311 |
+
|
312 |
+
n, m = weight.size(0), weight.size(1)
|
313 |
+
|
314 |
+
if quantization_cache is not None:
|
315 |
+
out = quantization_cache
|
316 |
+
func(
|
317 |
+
ctypes.c_void_p(weight.data_ptr()),
|
318 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
319 |
+
ctypes.c_void_p(out.data_ptr()),
|
320 |
+
ctypes.c_int32(n),
|
321 |
+
ctypes.c_int32(m)
|
322 |
+
)
|
323 |
+
return out.tensor
|
324 |
+
else:
|
325 |
+
out = torch.empty(n, m * (8 // source_bit_width), dtype=torch.float, device="cpu")
|
326 |
+
func(
|
327 |
+
ctypes.c_void_p(weight.data_ptr()),
|
328 |
+
ctypes.c_void_p(scale_list.data_ptr()),
|
329 |
+
ctypes.c_void_p(out.data_ptr()),
|
330 |
+
ctypes.c_int32(n),
|
331 |
+
ctypes.c_int32(m)
|
332 |
+
)
|
333 |
+
return out
|
334 |
+
|
335 |
+
|
336 |
+
class CacheTensor():
|
337 |
+
def __init__(self, *args, **kwargs):
|
338 |
+
self.tensor = torch.empty(*args, **kwargs)
|
339 |
+
|
340 |
+
def to(self, *args, **kwargs):
|
341 |
+
self.tensor = self.tensor.to(*args, **kwargs)
|
342 |
+
|
343 |
+
def data_ptr(self):
|
344 |
+
return self.tensor.data_ptr()
|
345 |
+
|
346 |
+
|
347 |
+
class QuantizedLinear(Linear):
|
348 |
+
def __init__(self, weight_bit_width: int, weight_tensor=None, bias_tensor=None, quantized_weight=None,
|
349 |
+
quantized_weight_scale=None, quantization_cache=None, empty_init=False, *args, **kwargs):
|
350 |
+
super(QuantizedLinear, self).__init__(*args, **kwargs)
|
351 |
+
self.weight_bit_width = weight_bit_width
|
352 |
+
self.quantization_cache = quantization_cache
|
353 |
+
|
354 |
+
if (quantized_weight is not None) and (quantized_weight_scale is not None):
|
355 |
+
del self.weight
|
356 |
+
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
|
357 |
+
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
|
358 |
+
else:
|
359 |
+
shape = self.weight.shape
|
360 |
+
del self.weight
|
361 |
+
|
362 |
+
if weight_tensor is None or empty_init:
|
363 |
+
self.weight = torch.empty(
|
364 |
+
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
365 |
+
)
|
366 |
+
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
|
367 |
+
else:
|
368 |
+
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).to(
|
369 |
+
kwargs["dtype"])
|
370 |
+
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
371 |
+
if weight_bit_width == 4:
|
372 |
+
self.weight = compress_int4_weight(self.weight)
|
373 |
+
|
374 |
+
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
375 |
+
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
376 |
+
|
377 |
+
if bias_tensor is not None:
|
378 |
+
self.bias = Parameter(bias_tensor.to(kwargs["device"]), requires_grad=False)
|
379 |
+
else:
|
380 |
+
self.bias = None
|
381 |
+
|
382 |
+
def reset_parameters(self):
|
383 |
+
"""To accelerate initialization"""
|
384 |
+
pass
|
385 |
+
|
386 |
+
def forward(self, input):
|
387 |
+
if self.weight.device == torch.device("cpu"):
|
388 |
+
output = W8A16LinearCPU.apply(input, self.weight, self.weight_scale, self.weight_bit_width,
|
389 |
+
self.quantization_cache)
|
390 |
+
else:
|
391 |
+
output = W8A16Linear.apply(input, self.weight, self.weight_scale, self.weight_bit_width)
|
392 |
+
if self.bias is not None:
|
393 |
+
output = output + self.bias
|
394 |
+
return output
|
395 |
+
|
396 |
+
def _apply(self, fn):
|
397 |
+
self_obj = super()._apply(fn)
|
398 |
+
if self.quantization_cache is not None:
|
399 |
+
self.quantization_cache.to(self_obj.weight.device)
|
400 |
+
self.quantization_cache.to(self_obj.weight_scale.dtype)
|
401 |
+
return self_obj
|
402 |
+
|
403 |
+
|
404 |
+
class QuantizedEmbedding(Embedding): # TODO: backward, check empty_init
|
405 |
+
def __init__(self, weight_bit_width: int, weight_tensor=None, quantized_weight=None, quantized_weight_scale=None,
|
406 |
+
empty_init=False, *args, **kwargs):
|
407 |
+
super(QuantizedEmbedding, self).__init__(*args, **kwargs)
|
408 |
+
self.weight_bit_width = weight_bit_width
|
409 |
+
|
410 |
+
if (quantized_weight is not None) and (quantized_weight_scale is not None):
|
411 |
+
del self.weight
|
412 |
+
self.weight = Parameter(quantized_weight.to(kwargs["device"]), requires_grad=False)
|
413 |
+
self.weight_scale = Parameter(quantized_weight_scale.to(kwargs["device"]), requires_grad=False)
|
414 |
+
else:
|
415 |
+
shape = self.weight.shape
|
416 |
+
del self.weight
|
417 |
+
|
418 |
+
if weight_tensor is None or empty_init:
|
419 |
+
self.weight = torch.empty(
|
420 |
+
shape[0], shape[1] * weight_bit_width // 8, dtype=torch.int8, device=kwargs["device"]
|
421 |
+
)
|
422 |
+
self.weight_scale = torch.empty(shape[0], dtype=kwargs["dtype"], device=kwargs["device"])
|
423 |
+
else:
|
424 |
+
self.weight_scale = (weight_tensor.abs().max(dim=-1).values / ((2 ** (weight_bit_width - 1)) - 1)).to(
|
425 |
+
kwargs["dtype"])
|
426 |
+
self.weight = torch.round(weight_tensor / self.weight_scale[:, None]).to(torch.int8)
|
427 |
+
if weight_bit_width == 4:
|
428 |
+
self.weight = compress_int4_weight(self.weight)
|
429 |
+
|
430 |
+
self.weight = Parameter(self.weight.to(kwargs["device"]), requires_grad=False)
|
431 |
+
self.weight_scale = Parameter(self.weight_scale.to(kwargs["device"]), requires_grad=False)
|
432 |
+
|
433 |
+
def forward(self, input):
|
434 |
+
if self.weight.device == torch.device("cpu"):
|
435 |
+
original_weight = extract_weight_to_float(weight=self.weight, scale_list=self.weight_scale,
|
436 |
+
source_bit_width=self.weight_bit_width)
|
437 |
+
else:
|
438 |
+
original_weight = extract_weight_to_half(weight=self.weight, scale_list=self.weight_scale,
|
439 |
+
source_bit_width=self.weight_bit_width)
|
440 |
+
output = F.embedding(
|
441 |
+
input, original_weight, self.padding_idx, self.max_norm,
|
442 |
+
self.norm_type, self.scale_grad_by_freq, self.sparse
|
443 |
+
)
|
444 |
+
return output
|
445 |
+
|
446 |
+
|
447 |
+
def load_cpu_kernel(**kwargs):
|
448 |
+
global cpu_kernels
|
449 |
+
cpu_kernels = CPUKernel(**kwargs)
|
450 |
+
|
451 |
+
|
452 |
+
def quantize(model, weight_bit_width, use_quantization_cache=False, empty_init=False, **kwargs):
|
453 |
+
"""Replace fp16 linear with quantized linear"""
|
454 |
+
|
455 |
+
query_key_value_quantization_cache = None
|
456 |
+
dense_quantization_cache = None
|
457 |
+
dense_h_to_4h_quantization_cache = None
|
458 |
+
dense_4h_to_h_quantization_cache = None
|
459 |
+
|
460 |
+
load_cpu_kernel(**kwargs)
|
461 |
+
if not cpu_kernels.load:
|
462 |
+
if kernels is None: # CUDA kernels failed
|
463 |
+
print("Cannot load cpu or cuda kernel, quantization failed:")
|
464 |
+
assert kernels is not None
|
465 |
+
print("Cannot load cpu kernel, don't use quantized model on cpu.")
|
466 |
+
|
467 |
+
current_device = model.device
|
468 |
+
|
469 |
+
if model.device == torch.device("cpu"):
|
470 |
+
dtype = torch.float32
|
471 |
+
else:
|
472 |
+
dtype = torch.half
|
473 |
+
|
474 |
+
QuantizedLinearWithPara = partial(
|
475 |
+
QuantizedLinear,
|
476 |
+
weight_bit_width=weight_bit_width,
|
477 |
+
bias=True,
|
478 |
+
dtype=dtype,
|
479 |
+
empty_init=empty_init
|
480 |
+
)
|
481 |
+
|
482 |
+
if use_quantization_cache:
|
483 |
+
print("Using quantization cache")
|
484 |
+
layer = model.layers[0]
|
485 |
+
weight = layer.attention.query_key_value.weight
|
486 |
+
n, m = weight.size(0), weight.size(1)
|
487 |
+
query_key_value_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
488 |
+
weight = layer.attention.dense.weight
|
489 |
+
n, m = weight.size(0), weight.size(1)
|
490 |
+
dense_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
491 |
+
weight = layer.mlp.dense_h_to_4h.weight
|
492 |
+
n, m = weight.size(0), weight.size(1)
|
493 |
+
dense_h_to_4h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
494 |
+
weight = layer.mlp.dense_4h_to_h.weight
|
495 |
+
n, m = weight.size(0), weight.size(1)
|
496 |
+
dense_4h_to_h_quantization_cache = CacheTensor(n, m, dtype=dtype, device=current_device, requires_grad=False)
|
497 |
+
|
498 |
+
print("Applying quantization to glm layers")
|
499 |
+
|
500 |
+
for layer in model.layers:
|
501 |
+
layer.attention.query_key_value = QuantizedLinearWithPara(
|
502 |
+
weight_tensor=layer.attention.query_key_value.weight.to(current_device),
|
503 |
+
bias_tensor=layer.attention.query_key_value.bias,
|
504 |
+
in_features=layer.attention.query_key_value.in_features,
|
505 |
+
out_features=layer.attention.query_key_value.out_features,
|
506 |
+
device=layer.attention.query_key_value.weight.device,
|
507 |
+
quantization_cache=query_key_value_quantization_cache
|
508 |
+
)
|
509 |
+
layer.attention.dense = QuantizedLinearWithPara(
|
510 |
+
weight_tensor=layer.attention.dense.weight.to(current_device),
|
511 |
+
bias_tensor=layer.attention.dense.bias,
|
512 |
+
in_features=layer.attention.dense.in_features,
|
513 |
+
out_features=layer.attention.dense.out_features,
|
514 |
+
device=layer.attention.dense.weight.device,
|
515 |
+
quantization_cache=dense_quantization_cache
|
516 |
+
)
|
517 |
+
layer.mlp.dense_h_to_4h = QuantizedLinearWithPara(
|
518 |
+
weight_tensor=layer.mlp.dense_h_to_4h.weight.to(current_device),
|
519 |
+
bias_tensor=layer.mlp.dense_h_to_4h.bias,
|
520 |
+
in_features=layer.mlp.dense_h_to_4h.in_features,
|
521 |
+
out_features=layer.mlp.dense_h_to_4h.out_features,
|
522 |
+
device=layer.mlp.dense_h_to_4h.weight.device,
|
523 |
+
quantization_cache=dense_h_to_4h_quantization_cache
|
524 |
+
)
|
525 |
+
layer.mlp.dense_4h_to_h = QuantizedLinearWithPara(
|
526 |
+
weight_tensor=layer.mlp.dense_4h_to_h.weight.to(current_device),
|
527 |
+
bias_tensor=layer.mlp.dense_4h_to_h.bias,
|
528 |
+
in_features=layer.mlp.dense_4h_to_h.in_features,
|
529 |
+
out_features=layer.mlp.dense_4h_to_h.out_features,
|
530 |
+
device=layer.mlp.dense_4h_to_h.weight.device,
|
531 |
+
quantization_cache=dense_4h_to_h_quantization_cache
|
532 |
+
)
|
533 |
+
return model
|
xiaowo/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bb7f4ea82efa2762df9b1d92c3cd635e2f206648536bff15c82e5349882c08b
|
3 |
+
size 14575
|
xiaowo/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76865769b4b6b37c95369d34996cca04197a697394c214078eea0941cf10ccb9
|
3 |
+
size 627
|
xiaowo/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<sop>",
|
3 |
+
"eos_token": "<eop>",
|
4 |
+
"mask_token": "[MASK]",
|
5 |
+
"pad_token": "<pad>",
|
6 |
+
"unk_token": "<unk>"
|
7 |
+
}
|
xiaowo/tokenization_chatglm.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
from typing import Dict
|
9 |
+
import sentencepiece as spm
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
15 |
+
"THUDM/chatglm-6b": 2048,
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class TextTokenizer:
|
20 |
+
def __init__(self, model_path):
|
21 |
+
self.sp = spm.SentencePieceProcessor()
|
22 |
+
self.sp.Load(model_path)
|
23 |
+
self.num_tokens = self.sp.vocab_size()
|
24 |
+
|
25 |
+
def encode(self, text):
|
26 |
+
return self.sp.EncodeAsIds(text)
|
27 |
+
|
28 |
+
def decode(self, ids: List[int]):
|
29 |
+
return self.sp.DecodeIds(ids)
|
30 |
+
|
31 |
+
def tokenize(self, text):
|
32 |
+
return self.sp.EncodeAsPieces(text)
|
33 |
+
|
34 |
+
def convert_tokens_to_string(self, tokens):
|
35 |
+
return self.sp.DecodePieces(tokens)
|
36 |
+
|
37 |
+
def convert_tokens_to_ids(self, tokens):
|
38 |
+
return [self.sp.PieceToId(token) for token in tokens]
|
39 |
+
|
40 |
+
def convert_token_to_id(self, token):
|
41 |
+
return self.sp.PieceToId(token)
|
42 |
+
|
43 |
+
def convert_id_to_token(self, idx):
|
44 |
+
return self.sp.IdToPiece(idx)
|
45 |
+
|
46 |
+
def __len__(self):
|
47 |
+
return self.num_tokens
|
48 |
+
|
49 |
+
|
50 |
+
class SPTokenizer:
|
51 |
+
def __init__(
|
52 |
+
self,
|
53 |
+
vocab_file,
|
54 |
+
num_image_tokens=20000,
|
55 |
+
max_blank_length=80,
|
56 |
+
byte_fallback=True,
|
57 |
+
):
|
58 |
+
assert vocab_file is not None
|
59 |
+
self.vocab_file = vocab_file
|
60 |
+
self.num_image_tokens = num_image_tokens
|
61 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
62 |
+
self.max_blank_length = max_blank_length
|
63 |
+
self.byte_fallback = byte_fallback
|
64 |
+
self.text_tokenizer = TextTokenizer(vocab_file)
|
65 |
+
|
66 |
+
def _get_text_tokenizer(self):
|
67 |
+
return self.text_tokenizer
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
def get_blank_token(length: int):
|
71 |
+
assert length >= 2
|
72 |
+
return f"<|blank_{length}|>"
|
73 |
+
|
74 |
+
@staticmethod
|
75 |
+
def get_tab_token():
|
76 |
+
return f"<|tab|>"
|
77 |
+
|
78 |
+
@property
|
79 |
+
def num_text_tokens(self):
|
80 |
+
return self.text_tokenizer.num_tokens
|
81 |
+
|
82 |
+
@property
|
83 |
+
def num_tokens(self):
|
84 |
+
return self.num_image_tokens + self.num_text_tokens
|
85 |
+
|
86 |
+
@staticmethod
|
87 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
88 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
89 |
+
for i in range(max_len, 1, -1):
|
90 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
91 |
+
return text
|
92 |
+
|
93 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
94 |
+
if linebreak:
|
95 |
+
text = text.replace("\n", "<n>")
|
96 |
+
if whitespaces:
|
97 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
98 |
+
return text
|
99 |
+
|
100 |
+
def encode(
|
101 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
102 |
+
) -> List[int]:
|
103 |
+
"""
|
104 |
+
@param text: Text to encode.
|
105 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
106 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
107 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
108 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
109 |
+
"""
|
110 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
111 |
+
if not add_dummy_prefix:
|
112 |
+
text = "<n>" + text
|
113 |
+
tmp = self._get_text_tokenizer().encode(text)
|
114 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
115 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
116 |
+
|
117 |
+
def postprocess(self, text):
|
118 |
+
text = text.replace("<n>", "\n")
|
119 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
120 |
+
for i in range(2, self.max_blank_length + 1):
|
121 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
122 |
+
return text
|
123 |
+
|
124 |
+
def decode(self, text_ids: List[int]) -> str:
|
125 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
126 |
+
ids = [_id for _id in ids if _id >= 0]
|
127 |
+
text = self._get_text_tokenizer().decode(ids)
|
128 |
+
text = self.postprocess(text)
|
129 |
+
return text
|
130 |
+
|
131 |
+
def decode_tokens(self, tokens: List[str]) -> str:
|
132 |
+
text = self._get_text_tokenizer().convert_tokens_to_string(tokens)
|
133 |
+
text = self.postprocess(text)
|
134 |
+
return text
|
135 |
+
|
136 |
+
def tokenize(
|
137 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
138 |
+
) -> List[str]:
|
139 |
+
"""
|
140 |
+
@param text: Text to encode.
|
141 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
142 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
143 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
144 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
145 |
+
"""
|
146 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
147 |
+
if not add_dummy_prefix:
|
148 |
+
text = "<n>" + text
|
149 |
+
tokens = self._get_text_tokenizer().tokenize(text)
|
150 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
151 |
+
|
152 |
+
def __getitem__(self, x: Union[int, str]):
|
153 |
+
if isinstance(x, int):
|
154 |
+
if x < self.num_image_tokens:
|
155 |
+
return "<image_{}>".format(x)
|
156 |
+
else:
|
157 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
158 |
+
elif isinstance(x, str):
|
159 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
160 |
+
return int(x[7:-1])
|
161 |
+
else:
|
162 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
163 |
+
else:
|
164 |
+
raise ValueError("The key should be str or int.")
|
165 |
+
|
166 |
+
|
167 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
168 |
+
"""
|
169 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
vocab_file (`str`):
|
173 |
+
Path to the vocabulary file.
|
174 |
+
"""
|
175 |
+
|
176 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
177 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
178 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
179 |
+
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
vocab_file,
|
183 |
+
do_lower_case=False,
|
184 |
+
remove_space=False,
|
185 |
+
bos_token='<sop>',
|
186 |
+
eos_token='<eop>',
|
187 |
+
end_token='</s>',
|
188 |
+
mask_token='[MASK]',
|
189 |
+
gmask_token='[gMASK]',
|
190 |
+
padding_side="left",
|
191 |
+
pad_token="<pad>",
|
192 |
+
unk_token="<unk>",
|
193 |
+
num_image_tokens=20000,
|
194 |
+
**kwargs
|
195 |
+
) -> None:
|
196 |
+
super().__init__(
|
197 |
+
do_lower_case=do_lower_case,
|
198 |
+
remove_space=remove_space,
|
199 |
+
padding_side=padding_side,
|
200 |
+
bos_token=bos_token,
|
201 |
+
eos_token=eos_token,
|
202 |
+
end_token=end_token,
|
203 |
+
mask_token=mask_token,
|
204 |
+
gmask_token=gmask_token,
|
205 |
+
pad_token=pad_token,
|
206 |
+
unk_token=unk_token,
|
207 |
+
num_image_tokens=num_image_tokens,
|
208 |
+
**kwargs
|
209 |
+
)
|
210 |
+
|
211 |
+
self.do_lower_case = do_lower_case
|
212 |
+
self.remove_space = remove_space
|
213 |
+
self.vocab_file = vocab_file
|
214 |
+
|
215 |
+
self.bos_token = bos_token
|
216 |
+
self.eos_token = eos_token
|
217 |
+
self.end_token = end_token
|
218 |
+
self.mask_token = mask_token
|
219 |
+
self.gmask_token = gmask_token
|
220 |
+
|
221 |
+
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
222 |
+
|
223 |
+
""" Initialisation """
|
224 |
+
|
225 |
+
@property
|
226 |
+
def gmask_token_id(self) -> Optional[int]:
|
227 |
+
if self.gmask_token is None:
|
228 |
+
return None
|
229 |
+
return self.convert_tokens_to_ids(self.gmask_token)
|
230 |
+
|
231 |
+
@property
|
232 |
+
def end_token_id(self) -> Optional[int]:
|
233 |
+
"""
|
234 |
+
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
235 |
+
set.
|
236 |
+
"""
|
237 |
+
if self.end_token is None:
|
238 |
+
return None
|
239 |
+
return self.convert_tokens_to_ids(self.end_token)
|
240 |
+
|
241 |
+
@property
|
242 |
+
def vocab_size(self):
|
243 |
+
""" Returns vocab size """
|
244 |
+
return self.sp_tokenizer.num_tokens
|
245 |
+
|
246 |
+
def get_vocab(self):
|
247 |
+
""" Returns vocab as a dict """
|
248 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
249 |
+
vocab.update(self.added_tokens_encoder)
|
250 |
+
return vocab
|
251 |
+
|
252 |
+
def preprocess_text(self, inputs):
|
253 |
+
if self.remove_space:
|
254 |
+
outputs = " ".join(inputs.strip().split())
|
255 |
+
else:
|
256 |
+
outputs = inputs
|
257 |
+
|
258 |
+
if self.do_lower_case:
|
259 |
+
outputs = outputs.lower()
|
260 |
+
|
261 |
+
return outputs
|
262 |
+
|
263 |
+
def _tokenize(self, text, **kwargs):
|
264 |
+
""" Returns a tokenized string. """
|
265 |
+
text = self.preprocess_text(text)
|
266 |
+
|
267 |
+
seq = self.sp_tokenizer.tokenize(text)
|
268 |
+
|
269 |
+
return seq
|
270 |
+
|
271 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
272 |
+
return self.sp_tokenizer.decode_tokens(tokens)
|
273 |
+
|
274 |
+
def _decode(
|
275 |
+
self,
|
276 |
+
token_ids: Union[int, List[int]],
|
277 |
+
**kwargs
|
278 |
+
) -> str:
|
279 |
+
if isinstance(token_ids, int):
|
280 |
+
token_ids = [token_ids]
|
281 |
+
if len(token_ids) == 0:
|
282 |
+
return ""
|
283 |
+
if self.pad_token_id in token_ids: # remove pad
|
284 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
285 |
+
return super()._decode(token_ids, **kwargs)
|
286 |
+
|
287 |
+
def _convert_token_to_id(self, token):
|
288 |
+
""" Converts a token (str) in an id using the vocab. """
|
289 |
+
return self.sp_tokenizer[token]
|
290 |
+
|
291 |
+
def _convert_id_to_token(self, index):
|
292 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
293 |
+
return self.sp_tokenizer[index]
|
294 |
+
|
295 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
296 |
+
"""
|
297 |
+
Save the vocabulary and special tokens file to a directory.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
save_directory (`str`):
|
301 |
+
The directory in which to save the vocabulary.
|
302 |
+
filename_prefix (`str`, *optional*):
|
303 |
+
An optional prefix to add to the named of the saved files.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
`Tuple(str)`: Paths to the files saved.
|
307 |
+
"""
|
308 |
+
if os.path.isdir(save_directory):
|
309 |
+
vocab_file = os.path.join(
|
310 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
vocab_file = save_directory
|
314 |
+
|
315 |
+
with open(self.vocab_file, 'rb') as fin:
|
316 |
+
proto_str = fin.read()
|
317 |
+
|
318 |
+
with open(vocab_file, "wb") as writer:
|
319 |
+
writer.write(proto_str)
|
320 |
+
|
321 |
+
return (vocab_file,)
|
322 |
+
|
323 |
+
def build_inputs_with_special_tokens(
|
324 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
325 |
+
) -> List[int]:
|
326 |
+
"""
|
327 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
328 |
+
adding special tokens. A BERT sequence has the following format:
|
329 |
+
|
330 |
+
- single sequence: `[CLS] X [SEP]`
|
331 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
332 |
+
|
333 |
+
Args:
|
334 |
+
token_ids_0 (`List[int]`):
|
335 |
+
List of IDs to which the special tokens will be added.
|
336 |
+
token_ids_1 (`List[int]`, *optional*):
|
337 |
+
Optional second list of IDs for sequence pairs.
|
338 |
+
|
339 |
+
Returns:
|
340 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
341 |
+
"""
|
342 |
+
gmask_id = self.sp_tokenizer[self.gmask_token]
|
343 |
+
eos_id = self.sp_tokenizer[self.eos_token]
|
344 |
+
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
345 |
+
if token_ids_1 is not None:
|
346 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
|
347 |
+
return token_ids_0
|
348 |
+
|
349 |
+
def _pad(
|
350 |
+
self,
|
351 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
352 |
+
max_length: Optional[int] = None,
|
353 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
354 |
+
pad_to_multiple_of: Optional[int] = None,
|
355 |
+
return_attention_mask: Optional[bool] = None,
|
356 |
+
) -> dict:
|
357 |
+
"""
|
358 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
359 |
+
|
360 |
+
Args:
|
361 |
+
encoded_inputs:
|
362 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
363 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
364 |
+
Will truncate by taking into account the special tokens.
|
365 |
+
padding_strategy: PaddingStrategy to use for padding.
|
366 |
+
|
367 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
368 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
369 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
370 |
+
The tokenizer padding sides are defined in self.padding_side:
|
371 |
+
|
372 |
+
- 'left': pads on the left of the sequences
|
373 |
+
- 'right': pads on the right of the sequences
|
374 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
375 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
376 |
+
`>= 7.5` (Volta).
|
377 |
+
return_attention_mask:
|
378 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
379 |
+
"""
|
380 |
+
# Load from model defaults
|
381 |
+
bos_token_id = self.sp_tokenizer[self.bos_token]
|
382 |
+
mask_token_id = self.sp_tokenizer[self.mask_token]
|
383 |
+
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
384 |
+
assert self.padding_side == "left"
|
385 |
+
|
386 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
387 |
+
seq_length = len(required_input)
|
388 |
+
|
389 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
390 |
+
max_length = len(required_input)
|
391 |
+
|
392 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
393 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
394 |
+
|
395 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
396 |
+
|
397 |
+
# Initialize attention mask if not present.
|
398 |
+
if max_length is not None:
|
399 |
+
if "attention_mask" not in encoded_inputs:
|
400 |
+
if bos_token_id in required_input:
|
401 |
+
context_length = required_input.index(bos_token_id)
|
402 |
+
else:
|
403 |
+
context_length = seq_length
|
404 |
+
attention_mask = np.ones((1, seq_length, seq_length))
|
405 |
+
attention_mask = np.tril(attention_mask)
|
406 |
+
attention_mask[:, :, :context_length] = 1
|
407 |
+
attention_mask = np.bool_(attention_mask < 0.5)
|
408 |
+
encoded_inputs["attention_mask"] = attention_mask
|
409 |
+
|
410 |
+
if "position_ids" not in encoded_inputs:
|
411 |
+
if bos_token_id in required_input:
|
412 |
+
context_length = required_input.index(bos_token_id)
|
413 |
+
else:
|
414 |
+
context_length = seq_length
|
415 |
+
position_ids = np.arange(seq_length, dtype=np.int64)
|
416 |
+
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
417 |
+
if mask_token in required_input:
|
418 |
+
mask_position = required_input.index(mask_token)
|
419 |
+
position_ids[context_length:] = mask_position
|
420 |
+
block_position_ids = np.concatenate(
|
421 |
+
[np.zeros(context_length, dtype=np.int64),
|
422 |
+
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
423 |
+
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
424 |
+
|
425 |
+
if needs_to_be_padded:
|
426 |
+
difference = max_length - len(required_input)
|
427 |
+
|
428 |
+
if "attention_mask" in encoded_inputs:
|
429 |
+
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
430 |
+
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
431 |
+
mode='constant', constant_values=True)
|
432 |
+
if "token_type_ids" in encoded_inputs:
|
433 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
434 |
+
"token_type_ids"
|
435 |
+
]
|
436 |
+
if "special_tokens_mask" in encoded_inputs:
|
437 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
438 |
+
if "position_ids" in encoded_inputs:
|
439 |
+
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
440 |
+
pad_width=[(0, 0), (difference, 0)])
|
441 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
442 |
+
|
443 |
+
return encoded_inputs
|
xiaowo/tokenizer_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_chatglm.ChatGLMTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"bos_token": "<sop>",
|
9 |
+
"do_lower_case": false,
|
10 |
+
"end_token": "</s>",
|
11 |
+
"eos_token": "<eop>",
|
12 |
+
"gmask_token": "[gMASK]",
|
13 |
+
"mask_token": "[MASK]",
|
14 |
+
"model_max_length": 1000000000000000019884624838656,
|
15 |
+
"num_image_tokens": 0,
|
16 |
+
"pad_token": "<pad>",
|
17 |
+
"padding_side": "left",
|
18 |
+
"remove_space": false,
|
19 |
+
"special_tokens_map_file": null,
|
20 |
+
"tokenizer_class": "ChatGLMTokenizer",
|
21 |
+
"unk_token": "<unk>"
|
22 |
+
}
|
xiaowo/trainer_state.json
ADDED
@@ -0,0 +1,3016 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.305008235222351,
|
5 |
+
"global_step": 5000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 0.0,
|
12 |
+
"learning_rate": 0.0024984848484848484,
|
13 |
+
"loss": 8.3168,
|
14 |
+
"step": 10
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 0.0,
|
18 |
+
"learning_rate": 0.002496969696969697,
|
19 |
+
"loss": 7.4992,
|
20 |
+
"step": 20
|
21 |
+
},
|
22 |
+
{
|
23 |
+
"epoch": 0.0,
|
24 |
+
"learning_rate": 0.0024954545454545455,
|
25 |
+
"loss": 7.1773,
|
26 |
+
"step": 30
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"epoch": 0.0,
|
30 |
+
"learning_rate": 0.002493939393939394,
|
31 |
+
"loss": 6.7129,
|
32 |
+
"step": 40
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 0.0,
|
36 |
+
"learning_rate": 0.0024924242424242426,
|
37 |
+
"loss": 5.6141,
|
38 |
+
"step": 50
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.0,
|
42 |
+
"learning_rate": 0.002490909090909091,
|
43 |
+
"loss": 5.4168,
|
44 |
+
"step": 60
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.0,
|
48 |
+
"learning_rate": 0.0024893939393939393,
|
49 |
+
"loss": 5.2236,
|
50 |
+
"step": 70
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 0.0,
|
54 |
+
"learning_rate": 0.002487878787878788,
|
55 |
+
"loss": 5.5969,
|
56 |
+
"step": 80
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 0.01,
|
60 |
+
"learning_rate": 0.0024863636363636364,
|
61 |
+
"loss": 5.2027,
|
62 |
+
"step": 90
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"epoch": 0.01,
|
66 |
+
"learning_rate": 0.0024848484848484847,
|
67 |
+
"loss": 4.7475,
|
68 |
+
"step": 100
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"epoch": 0.01,
|
72 |
+
"learning_rate": 0.0024833333333333335,
|
73 |
+
"loss": 4.7779,
|
74 |
+
"step": 110
|
75 |
+
},
|
76 |
+
{
|
77 |
+
"epoch": 0.01,
|
78 |
+
"learning_rate": 0.002481818181818182,
|
79 |
+
"loss": 4.4724,
|
80 |
+
"step": 120
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.01,
|
84 |
+
"learning_rate": 0.00248030303030303,
|
85 |
+
"loss": 5.1906,
|
86 |
+
"step": 130
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.01,
|
90 |
+
"learning_rate": 0.0024787878787878785,
|
91 |
+
"loss": 4.949,
|
92 |
+
"step": 140
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 0.01,
|
96 |
+
"learning_rate": 0.0024772727272727273,
|
97 |
+
"loss": 4.3598,
|
98 |
+
"step": 150
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 0.01,
|
102 |
+
"learning_rate": 0.002475757575757576,
|
103 |
+
"loss": 4.6328,
|
104 |
+
"step": 160
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 0.01,
|
108 |
+
"learning_rate": 0.0024742424242424244,
|
109 |
+
"loss": 4.6934,
|
110 |
+
"step": 170
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"epoch": 0.01,
|
114 |
+
"learning_rate": 0.0024727272727272727,
|
115 |
+
"loss": 4.8184,
|
116 |
+
"step": 180
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.01,
|
120 |
+
"learning_rate": 0.0024712121212121215,
|
121 |
+
"loss": 4.6488,
|
122 |
+
"step": 190
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.01,
|
126 |
+
"learning_rate": 0.00246969696969697,
|
127 |
+
"loss": 4.7639,
|
128 |
+
"step": 200
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.01,
|
132 |
+
"learning_rate": 0.002468181818181818,
|
133 |
+
"loss": 4.6092,
|
134 |
+
"step": 210
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 0.01,
|
138 |
+
"learning_rate": 0.002466666666666667,
|
139 |
+
"loss": 4.8875,
|
140 |
+
"step": 220
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 0.01,
|
144 |
+
"learning_rate": 0.0024651515151515153,
|
145 |
+
"loss": 4.7232,
|
146 |
+
"step": 230
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"epoch": 0.01,
|
150 |
+
"learning_rate": 0.0024636363636363636,
|
151 |
+
"loss": 5.1139,
|
152 |
+
"step": 240
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"epoch": 0.02,
|
156 |
+
"learning_rate": 0.0024621212121212124,
|
157 |
+
"loss": 4.3293,
|
158 |
+
"step": 250
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.02,
|
162 |
+
"learning_rate": 0.0024606060606060607,
|
163 |
+
"loss": 4.6564,
|
164 |
+
"step": 260
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.02,
|
168 |
+
"learning_rate": 0.002459090909090909,
|
169 |
+
"loss": 4.7779,
|
170 |
+
"step": 270
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.02,
|
174 |
+
"learning_rate": 0.002457575757575758,
|
175 |
+
"loss": 4.6312,
|
176 |
+
"step": 280
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 0.02,
|
180 |
+
"learning_rate": 0.002456060606060606,
|
181 |
+
"loss": 4.4924,
|
182 |
+
"step": 290
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 0.02,
|
186 |
+
"learning_rate": 0.0024545454545454545,
|
187 |
+
"loss": 4.418,
|
188 |
+
"step": 300
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"epoch": 0.02,
|
192 |
+
"learning_rate": 0.0024530303030303032,
|
193 |
+
"loss": 4.2307,
|
194 |
+
"step": 310
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.02,
|
198 |
+
"learning_rate": 0.0024515151515151516,
|
199 |
+
"loss": 4.3598,
|
200 |
+
"step": 320
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.02,
|
204 |
+
"learning_rate": 0.00245,
|
205 |
+
"loss": 4.6166,
|
206 |
+
"step": 330
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.02,
|
210 |
+
"learning_rate": 0.0024484848484848487,
|
211 |
+
"loss": 4.7531,
|
212 |
+
"step": 340
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.02,
|
216 |
+
"learning_rate": 0.002446969696969697,
|
217 |
+
"loss": 4.5492,
|
218 |
+
"step": 350
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 0.02,
|
222 |
+
"learning_rate": 0.0024454545454545454,
|
223 |
+
"loss": 4.5928,
|
224 |
+
"step": 360
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 0.02,
|
228 |
+
"learning_rate": 0.0024439393939393937,
|
229 |
+
"loss": 4.576,
|
230 |
+
"step": 370
|
231 |
+
},
|
232 |
+
{
|
233 |
+
"epoch": 0.02,
|
234 |
+
"learning_rate": 0.0024424242424242425,
|
235 |
+
"loss": 4.5797,
|
236 |
+
"step": 380
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.02,
|
240 |
+
"learning_rate": 0.002440909090909091,
|
241 |
+
"loss": 4.3904,
|
242 |
+
"step": 390
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"epoch": 0.02,
|
246 |
+
"learning_rate": 0.002439393939393939,
|
247 |
+
"loss": 4.6285,
|
248 |
+
"step": 400
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.03,
|
252 |
+
"learning_rate": 0.002437878787878788,
|
253 |
+
"loss": 4.6023,
|
254 |
+
"step": 410
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.03,
|
258 |
+
"learning_rate": 0.0024363636363636362,
|
259 |
+
"loss": 4.3693,
|
260 |
+
"step": 420
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 0.03,
|
264 |
+
"learning_rate": 0.002434848484848485,
|
265 |
+
"loss": 4.585,
|
266 |
+
"step": 430
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 0.03,
|
270 |
+
"learning_rate": 0.0024333333333333334,
|
271 |
+
"loss": 4.7988,
|
272 |
+
"step": 440
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.03,
|
276 |
+
"learning_rate": 0.002431818181818182,
|
277 |
+
"loss": 4.2064,
|
278 |
+
"step": 450
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.03,
|
282 |
+
"learning_rate": 0.0024303030303030305,
|
283 |
+
"loss": 4.5627,
|
284 |
+
"step": 460
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 0.03,
|
288 |
+
"learning_rate": 0.002428787878787879,
|
289 |
+
"loss": 4.0707,
|
290 |
+
"step": 470
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.03,
|
294 |
+
"learning_rate": 0.0024272727272727276,
|
295 |
+
"loss": 4.5716,
|
296 |
+
"step": 480
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.03,
|
300 |
+
"learning_rate": 0.002425757575757576,
|
301 |
+
"loss": 4.3047,
|
302 |
+
"step": 490
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 0.03,
|
306 |
+
"learning_rate": 0.0024242424242424242,
|
307 |
+
"loss": 4.5617,
|
308 |
+
"step": 500
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 0.03,
|
312 |
+
"learning_rate": 0.002422727272727273,
|
313 |
+
"loss": 4.4297,
|
314 |
+
"step": 510
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.03,
|
318 |
+
"learning_rate": 0.0024212121212121213,
|
319 |
+
"loss": 4.8227,
|
320 |
+
"step": 520
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.03,
|
324 |
+
"learning_rate": 0.0024196969696969697,
|
325 |
+
"loss": 4.4693,
|
326 |
+
"step": 530
|
327 |
+
},
|
328 |
+
{
|
329 |
+
"epoch": 0.03,
|
330 |
+
"learning_rate": 0.0024181818181818185,
|
331 |
+
"loss": 4.3514,
|
332 |
+
"step": 540
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.03,
|
336 |
+
"learning_rate": 0.002416666666666667,
|
337 |
+
"loss": 4.368,
|
338 |
+
"step": 550
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.03,
|
342 |
+
"learning_rate": 0.002415151515151515,
|
343 |
+
"loss": 4.049,
|
344 |
+
"step": 560
|
345 |
+
},
|
346 |
+
{
|
347 |
+
"epoch": 0.03,
|
348 |
+
"learning_rate": 0.002413636363636364,
|
349 |
+
"loss": 4.5527,
|
350 |
+
"step": 570
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"epoch": 0.04,
|
354 |
+
"learning_rate": 0.0024121212121212122,
|
355 |
+
"loss": 4.7082,
|
356 |
+
"step": 580
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.04,
|
360 |
+
"learning_rate": 0.0024106060606060606,
|
361 |
+
"loss": 4.2236,
|
362 |
+
"step": 590
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"epoch": 0.04,
|
366 |
+
"learning_rate": 0.002409090909090909,
|
367 |
+
"loss": 4.5283,
|
368 |
+
"step": 600
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"epoch": 0.04,
|
372 |
+
"learning_rate": 0.0024075757575757577,
|
373 |
+
"loss": 4.5746,
|
374 |
+
"step": 610
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.04,
|
378 |
+
"learning_rate": 0.002406060606060606,
|
379 |
+
"loss": 4.6463,
|
380 |
+
"step": 620
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.04,
|
384 |
+
"learning_rate": 0.0024045454545454543,
|
385 |
+
"loss": 4.4469,
|
386 |
+
"step": 630
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"epoch": 0.04,
|
390 |
+
"learning_rate": 0.002403030303030303,
|
391 |
+
"loss": 4.6049,
|
392 |
+
"step": 640
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 0.04,
|
396 |
+
"learning_rate": 0.0024015151515151515,
|
397 |
+
"loss": 4.5684,
|
398 |
+
"step": 650
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.04,
|
402 |
+
"learning_rate": 0.0024,
|
403 |
+
"loss": 4.3484,
|
404 |
+
"step": 660
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"epoch": 0.04,
|
408 |
+
"learning_rate": 0.0023984848484848486,
|
409 |
+
"loss": 4.8201,
|
410 |
+
"step": 670
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 0.04,
|
414 |
+
"learning_rate": 0.002396969696969697,
|
415 |
+
"loss": 4.2961,
|
416 |
+
"step": 680
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 0.04,
|
420 |
+
"learning_rate": 0.0023954545454545452,
|
421 |
+
"loss": 3.9297,
|
422 |
+
"step": 690
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.04,
|
426 |
+
"learning_rate": 0.002393939393939394,
|
427 |
+
"loss": 4.7969,
|
428 |
+
"step": 700
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"epoch": 0.04,
|
432 |
+
"learning_rate": 0.0023924242424242423,
|
433 |
+
"loss": 4.5076,
|
434 |
+
"step": 710
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 0.04,
|
438 |
+
"learning_rate": 0.002390909090909091,
|
439 |
+
"loss": 4.8527,
|
440 |
+
"step": 720
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"epoch": 0.04,
|
444 |
+
"learning_rate": 0.0023893939393939394,
|
445 |
+
"loss": 4.5695,
|
446 |
+
"step": 730
|
447 |
+
},
|
448 |
+
{
|
449 |
+
"epoch": 0.05,
|
450 |
+
"learning_rate": 0.002387878787878788,
|
451 |
+
"loss": 4.425,
|
452 |
+
"step": 740
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 0.05,
|
456 |
+
"learning_rate": 0.0023863636363636366,
|
457 |
+
"loss": 4.2727,
|
458 |
+
"step": 750
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 0.05,
|
462 |
+
"learning_rate": 0.002384848484848485,
|
463 |
+
"loss": 4.5701,
|
464 |
+
"step": 760
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.05,
|
468 |
+
"learning_rate": 0.0023833333333333337,
|
469 |
+
"loss": 3.857,
|
470 |
+
"step": 770
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 0.05,
|
474 |
+
"learning_rate": 0.002381818181818182,
|
475 |
+
"loss": 4.6637,
|
476 |
+
"step": 780
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 0.05,
|
480 |
+
"learning_rate": 0.0023803030303030303,
|
481 |
+
"loss": 4.6662,
|
482 |
+
"step": 790
|
483 |
+
},
|
484 |
+
{
|
485 |
+
"epoch": 0.05,
|
486 |
+
"learning_rate": 0.002378787878787879,
|
487 |
+
"loss": 4.6828,
|
488 |
+
"step": 800
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"epoch": 0.05,
|
492 |
+
"learning_rate": 0.0023772727272727274,
|
493 |
+
"loss": 4.4822,
|
494 |
+
"step": 810
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.05,
|
498 |
+
"learning_rate": 0.0023757575757575758,
|
499 |
+
"loss": 4.5971,
|
500 |
+
"step": 820
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.05,
|
504 |
+
"learning_rate": 0.002374242424242424,
|
505 |
+
"loss": 4.2271,
|
506 |
+
"step": 830
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.05,
|
510 |
+
"learning_rate": 0.002372727272727273,
|
511 |
+
"loss": 3.6249,
|
512 |
+
"step": 840
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.05,
|
516 |
+
"learning_rate": 0.002371212121212121,
|
517 |
+
"loss": 4.3729,
|
518 |
+
"step": 850
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.05,
|
522 |
+
"learning_rate": 0.0023696969696969696,
|
523 |
+
"loss": 4.3625,
|
524 |
+
"step": 860
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.05,
|
528 |
+
"learning_rate": 0.0023681818181818183,
|
529 |
+
"loss": 3.9025,
|
530 |
+
"step": 870
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.05,
|
534 |
+
"learning_rate": 0.0023666666666666667,
|
535 |
+
"loss": 4.1387,
|
536 |
+
"step": 880
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.05,
|
540 |
+
"learning_rate": 0.002365151515151515,
|
541 |
+
"loss": 4.1297,
|
542 |
+
"step": 890
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.05,
|
546 |
+
"learning_rate": 0.0023636363636363638,
|
547 |
+
"loss": 4.4295,
|
548 |
+
"step": 900
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.06,
|
552 |
+
"learning_rate": 0.002362121212121212,
|
553 |
+
"loss": 4.315,
|
554 |
+
"step": 910
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.06,
|
558 |
+
"learning_rate": 0.0023606060606060604,
|
559 |
+
"loss": 4.6844,
|
560 |
+
"step": 920
|
561 |
+
},
|
562 |
+
{
|
563 |
+
"epoch": 0.06,
|
564 |
+
"learning_rate": 0.002359090909090909,
|
565 |
+
"loss": 4.3967,
|
566 |
+
"step": 930
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"epoch": 0.06,
|
570 |
+
"learning_rate": 0.0023575757575757575,
|
571 |
+
"loss": 4.3477,
|
572 |
+
"step": 940
|
573 |
+
},
|
574 |
+
{
|
575 |
+
"epoch": 0.06,
|
576 |
+
"learning_rate": 0.002356060606060606,
|
577 |
+
"loss": 4.3279,
|
578 |
+
"step": 950
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 0.06,
|
582 |
+
"learning_rate": 0.0023545454545454546,
|
583 |
+
"loss": 4.6373,
|
584 |
+
"step": 960
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 0.06,
|
588 |
+
"learning_rate": 0.002353030303030303,
|
589 |
+
"loss": 4.1047,
|
590 |
+
"step": 970
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 0.06,
|
594 |
+
"learning_rate": 0.0023515151515151513,
|
595 |
+
"loss": 4.2828,
|
596 |
+
"step": 980
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 0.06,
|
600 |
+
"learning_rate": 0.00235,
|
601 |
+
"loss": 4.559,
|
602 |
+
"step": 990
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"epoch": 0.06,
|
606 |
+
"learning_rate": 0.002348484848484849,
|
607 |
+
"loss": 4.6342,
|
608 |
+
"step": 1000
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"epoch": 0.06,
|
612 |
+
"learning_rate": 0.002346969696969697,
|
613 |
+
"loss": 4.5187,
|
614 |
+
"step": 1010
|
615 |
+
},
|
616 |
+
{
|
617 |
+
"epoch": 0.06,
|
618 |
+
"learning_rate": 0.0023454545454545455,
|
619 |
+
"loss": 4.242,
|
620 |
+
"step": 1020
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 0.06,
|
624 |
+
"learning_rate": 0.0023439393939393943,
|
625 |
+
"loss": 4.442,
|
626 |
+
"step": 1030
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 0.06,
|
630 |
+
"learning_rate": 0.0023424242424242426,
|
631 |
+
"loss": 4.3424,
|
632 |
+
"step": 1040
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 0.06,
|
636 |
+
"learning_rate": 0.002340909090909091,
|
637 |
+
"loss": 4.191,
|
638 |
+
"step": 1050
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 0.06,
|
642 |
+
"learning_rate": 0.0023393939393939393,
|
643 |
+
"loss": 4.4494,
|
644 |
+
"step": 1060
|
645 |
+
},
|
646 |
+
{
|
647 |
+
"epoch": 0.07,
|
648 |
+
"learning_rate": 0.002337878787878788,
|
649 |
+
"loss": 4.3324,
|
650 |
+
"step": 1070
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"epoch": 0.07,
|
654 |
+
"learning_rate": 0.0023363636363636364,
|
655 |
+
"loss": 4.1201,
|
656 |
+
"step": 1080
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"epoch": 0.07,
|
660 |
+
"learning_rate": 0.0023348484848484848,
|
661 |
+
"loss": 4.2084,
|
662 |
+
"step": 1090
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 0.07,
|
666 |
+
"learning_rate": 0.0023333333333333335,
|
667 |
+
"loss": 4.3176,
|
668 |
+
"step": 1100
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 0.07,
|
672 |
+
"learning_rate": 0.002331818181818182,
|
673 |
+
"loss": 4.4791,
|
674 |
+
"step": 1110
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 0.07,
|
678 |
+
"learning_rate": 0.00233030303030303,
|
679 |
+
"loss": 3.9592,
|
680 |
+
"step": 1120
|
681 |
+
},
|
682 |
+
{
|
683 |
+
"epoch": 0.07,
|
684 |
+
"learning_rate": 0.002328787878787879,
|
685 |
+
"loss": 4.3406,
|
686 |
+
"step": 1130
|
687 |
+
},
|
688 |
+
{
|
689 |
+
"epoch": 0.07,
|
690 |
+
"learning_rate": 0.0023272727272727273,
|
691 |
+
"loss": 4.1566,
|
692 |
+
"step": 1140
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"epoch": 0.07,
|
696 |
+
"learning_rate": 0.0023257575757575756,
|
697 |
+
"loss": 4.4951,
|
698 |
+
"step": 1150
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"epoch": 0.07,
|
702 |
+
"learning_rate": 0.0023242424242424244,
|
703 |
+
"loss": 3.873,
|
704 |
+
"step": 1160
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 0.07,
|
708 |
+
"learning_rate": 0.0023227272727272727,
|
709 |
+
"loss": 4.4193,
|
710 |
+
"step": 1170
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 0.07,
|
714 |
+
"learning_rate": 0.002321212121212121,
|
715 |
+
"loss": 4.2574,
|
716 |
+
"step": 1180
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 0.07,
|
720 |
+
"learning_rate": 0.00231969696969697,
|
721 |
+
"loss": 4.7572,
|
722 |
+
"step": 1190
|
723 |
+
},
|
724 |
+
{
|
725 |
+
"epoch": 0.07,
|
726 |
+
"learning_rate": 0.002318181818181818,
|
727 |
+
"loss": 4.3244,
|
728 |
+
"step": 1200
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"epoch": 0.07,
|
732 |
+
"learning_rate": 0.0023166666666666665,
|
733 |
+
"loss": 4.2613,
|
734 |
+
"step": 1210
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"epoch": 0.07,
|
738 |
+
"learning_rate": 0.0023151515151515153,
|
739 |
+
"loss": 4.5949,
|
740 |
+
"step": 1220
|
741 |
+
},
|
742 |
+
{
|
743 |
+
"epoch": 0.08,
|
744 |
+
"learning_rate": 0.0023136363636363636,
|
745 |
+
"loss": 4.1111,
|
746 |
+
"step": 1230
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 0.08,
|
750 |
+
"learning_rate": 0.002312121212121212,
|
751 |
+
"loss": 4.3355,
|
752 |
+
"step": 1240
|
753 |
+
},
|
754 |
+
{
|
755 |
+
"epoch": 0.08,
|
756 |
+
"learning_rate": 0.0023106060606060607,
|
757 |
+
"loss": 4.5539,
|
758 |
+
"step": 1250
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 0.08,
|
762 |
+
"learning_rate": 0.002309090909090909,
|
763 |
+
"loss": 4.221,
|
764 |
+
"step": 1260
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"epoch": 0.08,
|
768 |
+
"learning_rate": 0.0023075757575757574,
|
769 |
+
"loss": 4.0617,
|
770 |
+
"step": 1270
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"epoch": 0.08,
|
774 |
+
"learning_rate": 0.002306060606060606,
|
775 |
+
"loss": 4.2396,
|
776 |
+
"step": 1280
|
777 |
+
},
|
778 |
+
{
|
779 |
+
"epoch": 0.08,
|
780 |
+
"learning_rate": 0.0023045454545454545,
|
781 |
+
"loss": 4.6004,
|
782 |
+
"step": 1290
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 0.08,
|
786 |
+
"learning_rate": 0.0023030303030303033,
|
787 |
+
"loss": 4.533,
|
788 |
+
"step": 1300
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 0.08,
|
792 |
+
"learning_rate": 0.0023015151515151516,
|
793 |
+
"loss": 4.3018,
|
794 |
+
"step": 1310
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 0.08,
|
798 |
+
"learning_rate": 0.0023,
|
799 |
+
"loss": 3.9908,
|
800 |
+
"step": 1320
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"epoch": 0.08,
|
804 |
+
"learning_rate": 0.0022984848484848487,
|
805 |
+
"loss": 4.4869,
|
806 |
+
"step": 1330
|
807 |
+
},
|
808 |
+
{
|
809 |
+
"epoch": 0.08,
|
810 |
+
"learning_rate": 0.002296969696969697,
|
811 |
+
"loss": 4.1631,
|
812 |
+
"step": 1340
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"epoch": 0.08,
|
816 |
+
"learning_rate": 0.0022954545454545454,
|
817 |
+
"loss": 4.3191,
|
818 |
+
"step": 1350
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"epoch": 0.08,
|
822 |
+
"learning_rate": 0.002293939393939394,
|
823 |
+
"loss": 4.4717,
|
824 |
+
"step": 1360
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 0.08,
|
828 |
+
"learning_rate": 0.0022924242424242425,
|
829 |
+
"loss": 4.0645,
|
830 |
+
"step": 1370
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 0.08,
|
834 |
+
"learning_rate": 0.002290909090909091,
|
835 |
+
"loss": 4.2992,
|
836 |
+
"step": 1380
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 0.08,
|
840 |
+
"learning_rate": 0.0022893939393939396,
|
841 |
+
"loss": 4.2506,
|
842 |
+
"step": 1390
|
843 |
+
},
|
844 |
+
{
|
845 |
+
"epoch": 0.09,
|
846 |
+
"learning_rate": 0.002287878787878788,
|
847 |
+
"loss": 4.1289,
|
848 |
+
"step": 1400
|
849 |
+
},
|
850 |
+
{
|
851 |
+
"epoch": 0.09,
|
852 |
+
"learning_rate": 0.0022863636363636363,
|
853 |
+
"loss": 4.5553,
|
854 |
+
"step": 1410
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"epoch": 0.09,
|
858 |
+
"learning_rate": 0.002284848484848485,
|
859 |
+
"loss": 4.1268,
|
860 |
+
"step": 1420
|
861 |
+
},
|
862 |
+
{
|
863 |
+
"epoch": 0.09,
|
864 |
+
"learning_rate": 0.0022833333333333334,
|
865 |
+
"loss": 4.3211,
|
866 |
+
"step": 1430
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 0.09,
|
870 |
+
"learning_rate": 0.0022818181818181817,
|
871 |
+
"loss": 3.8847,
|
872 |
+
"step": 1440
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"epoch": 0.09,
|
876 |
+
"learning_rate": 0.0022803030303030305,
|
877 |
+
"loss": 3.9451,
|
878 |
+
"step": 1450
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"epoch": 0.09,
|
882 |
+
"learning_rate": 0.002278787878787879,
|
883 |
+
"loss": 3.6887,
|
884 |
+
"step": 1460
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 0.09,
|
888 |
+
"learning_rate": 0.002277272727272727,
|
889 |
+
"loss": 4.0348,
|
890 |
+
"step": 1470
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"epoch": 0.09,
|
894 |
+
"learning_rate": 0.002275757575757576,
|
895 |
+
"loss": 4.1012,
|
896 |
+
"step": 1480
|
897 |
+
},
|
898 |
+
{
|
899 |
+
"epoch": 0.09,
|
900 |
+
"learning_rate": 0.0022742424242424243,
|
901 |
+
"loss": 4.2861,
|
902 |
+
"step": 1490
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 0.09,
|
906 |
+
"learning_rate": 0.0022727272727272726,
|
907 |
+
"loss": 4.2572,
|
908 |
+
"step": 1500
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 0.09,
|
912 |
+
"learning_rate": 0.0022712121212121214,
|
913 |
+
"loss": 4.5604,
|
914 |
+
"step": 1510
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 0.09,
|
918 |
+
"learning_rate": 0.0022696969696969697,
|
919 |
+
"loss": 4.2148,
|
920 |
+
"step": 1520
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"epoch": 0.09,
|
924 |
+
"learning_rate": 0.002268181818181818,
|
925 |
+
"loss": 4.3568,
|
926 |
+
"step": 1530
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"epoch": 0.09,
|
930 |
+
"learning_rate": 0.0022666666666666664,
|
931 |
+
"loss": 4.293,
|
932 |
+
"step": 1540
|
933 |
+
},
|
934 |
+
{
|
935 |
+
"epoch": 0.09,
|
936 |
+
"learning_rate": 0.002265151515151515,
|
937 |
+
"loss": 4.658,
|
938 |
+
"step": 1550
|
939 |
+
},
|
940 |
+
{
|
941 |
+
"epoch": 0.1,
|
942 |
+
"learning_rate": 0.0022636363636363635,
|
943 |
+
"loss": 4.4127,
|
944 |
+
"step": 1560
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 0.1,
|
948 |
+
"learning_rate": 0.0022621212121212123,
|
949 |
+
"loss": 4.3584,
|
950 |
+
"step": 1570
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 0.1,
|
954 |
+
"learning_rate": 0.0022606060606060606,
|
955 |
+
"loss": 4.3832,
|
956 |
+
"step": 1580
|
957 |
+
},
|
958 |
+
{
|
959 |
+
"epoch": 0.1,
|
960 |
+
"learning_rate": 0.0022590909090909094,
|
961 |
+
"loss": 4.1822,
|
962 |
+
"step": 1590
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 0.1,
|
966 |
+
"learning_rate": 0.0022575757575757577,
|
967 |
+
"loss": 4.4045,
|
968 |
+
"step": 1600
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"epoch": 0.1,
|
972 |
+
"learning_rate": 0.002256060606060606,
|
973 |
+
"loss": 4.4514,
|
974 |
+
"step": 1610
|
975 |
+
},
|
976 |
+
{
|
977 |
+
"epoch": 0.1,
|
978 |
+
"learning_rate": 0.002254545454545455,
|
979 |
+
"loss": 3.8766,
|
980 |
+
"step": 1620
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 0.1,
|
984 |
+
"learning_rate": 0.002253030303030303,
|
985 |
+
"loss": 4.6047,
|
986 |
+
"step": 1630
|
987 |
+
},
|
988 |
+
{
|
989 |
+
"epoch": 0.1,
|
990 |
+
"learning_rate": 0.0022515151515151515,
|
991 |
+
"loss": 4.1969,
|
992 |
+
"step": 1640
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 0.1,
|
996 |
+
"learning_rate": 0.0022500000000000003,
|
997 |
+
"loss": 4.1688,
|
998 |
+
"step": 1650
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"epoch": 0.1,
|
1002 |
+
"learning_rate": 0.0022484848484848486,
|
1003 |
+
"loss": 4.5,
|
1004 |
+
"step": 1660
|
1005 |
+
},
|
1006 |
+
{
|
1007 |
+
"epoch": 0.1,
|
1008 |
+
"learning_rate": 0.002246969696969697,
|
1009 |
+
"loss": 4.1338,
|
1010 |
+
"step": 1670
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 0.1,
|
1014 |
+
"learning_rate": 0.0022454545454545457,
|
1015 |
+
"loss": 4.4885,
|
1016 |
+
"step": 1680
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"epoch": 0.1,
|
1020 |
+
"learning_rate": 0.002243939393939394,
|
1021 |
+
"loss": 3.8264,
|
1022 |
+
"step": 1690
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"epoch": 0.1,
|
1026 |
+
"learning_rate": 0.0022424242424242424,
|
1027 |
+
"loss": 4.1896,
|
1028 |
+
"step": 1700
|
1029 |
+
},
|
1030 |
+
{
|
1031 |
+
"epoch": 0.1,
|
1032 |
+
"learning_rate": 0.002240909090909091,
|
1033 |
+
"loss": 4.1893,
|
1034 |
+
"step": 1710
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 0.1,
|
1038 |
+
"learning_rate": 0.0022393939393939395,
|
1039 |
+
"loss": 4.3912,
|
1040 |
+
"step": 1720
|
1041 |
+
},
|
1042 |
+
{
|
1043 |
+
"epoch": 0.11,
|
1044 |
+
"learning_rate": 0.002237878787878788,
|
1045 |
+
"loss": 4.2867,
|
1046 |
+
"step": 1730
|
1047 |
+
},
|
1048 |
+
{
|
1049 |
+
"epoch": 0.11,
|
1050 |
+
"learning_rate": 0.0022363636363636366,
|
1051 |
+
"loss": 4.3912,
|
1052 |
+
"step": 1740
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"epoch": 0.11,
|
1056 |
+
"learning_rate": 0.002234848484848485,
|
1057 |
+
"loss": 4.1045,
|
1058 |
+
"step": 1750
|
1059 |
+
},
|
1060 |
+
{
|
1061 |
+
"epoch": 0.11,
|
1062 |
+
"learning_rate": 0.0022333333333333333,
|
1063 |
+
"loss": 4.1043,
|
1064 |
+
"step": 1760
|
1065 |
+
},
|
1066 |
+
{
|
1067 |
+
"epoch": 0.11,
|
1068 |
+
"learning_rate": 0.0022318181818181816,
|
1069 |
+
"loss": 4.2686,
|
1070 |
+
"step": 1770
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"epoch": 0.11,
|
1074 |
+
"learning_rate": 0.0022303030303030304,
|
1075 |
+
"loss": 4.4639,
|
1076 |
+
"step": 1780
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.11,
|
1080 |
+
"learning_rate": 0.0022287878787878787,
|
1081 |
+
"loss": 4.0201,
|
1082 |
+
"step": 1790
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.11,
|
1086 |
+
"learning_rate": 0.002227272727272727,
|
1087 |
+
"loss": 4.0189,
|
1088 |
+
"step": 1800
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.11,
|
1092 |
+
"learning_rate": 0.002225757575757576,
|
1093 |
+
"loss": 4.0787,
|
1094 |
+
"step": 1810
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.11,
|
1098 |
+
"learning_rate": 0.002224242424242424,
|
1099 |
+
"loss": 3.8324,
|
1100 |
+
"step": 1820
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.11,
|
1104 |
+
"learning_rate": 0.0022227272727272725,
|
1105 |
+
"loss": 4.4113,
|
1106 |
+
"step": 1830
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.11,
|
1110 |
+
"learning_rate": 0.0022212121212121213,
|
1111 |
+
"loss": 4.117,
|
1112 |
+
"step": 1840
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.11,
|
1116 |
+
"learning_rate": 0.00221969696969697,
|
1117 |
+
"loss": 4.1695,
|
1118 |
+
"step": 1850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.11,
|
1122 |
+
"learning_rate": 0.0022181818181818184,
|
1123 |
+
"loss": 4.2963,
|
1124 |
+
"step": 1860
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 0.11,
|
1128 |
+
"learning_rate": 0.0022166666666666667,
|
1129 |
+
"loss": 4.4145,
|
1130 |
+
"step": 1870
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 0.11,
|
1134 |
+
"learning_rate": 0.0022151515151515155,
|
1135 |
+
"loss": 4.076,
|
1136 |
+
"step": 1880
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 0.12,
|
1140 |
+
"learning_rate": 0.002213636363636364,
|
1141 |
+
"loss": 4.3945,
|
1142 |
+
"step": 1890
|
1143 |
+
},
|
1144 |
+
{
|
1145 |
+
"epoch": 0.12,
|
1146 |
+
"learning_rate": 0.002212121212121212,
|
1147 |
+
"loss": 4.042,
|
1148 |
+
"step": 1900
|
1149 |
+
},
|
1150 |
+
{
|
1151 |
+
"epoch": 0.12,
|
1152 |
+
"learning_rate": 0.002210606060606061,
|
1153 |
+
"loss": 3.8959,
|
1154 |
+
"step": 1910
|
1155 |
+
},
|
1156 |
+
{
|
1157 |
+
"epoch": 0.12,
|
1158 |
+
"learning_rate": 0.0022090909090909092,
|
1159 |
+
"loss": 3.8939,
|
1160 |
+
"step": 1920
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 0.12,
|
1164 |
+
"learning_rate": 0.0022075757575757576,
|
1165 |
+
"loss": 4.3057,
|
1166 |
+
"step": 1930
|
1167 |
+
},
|
1168 |
+
{
|
1169 |
+
"epoch": 0.12,
|
1170 |
+
"learning_rate": 0.0022060606060606064,
|
1171 |
+
"loss": 4.5699,
|
1172 |
+
"step": 1940
|
1173 |
+
},
|
1174 |
+
{
|
1175 |
+
"epoch": 0.12,
|
1176 |
+
"learning_rate": 0.0022045454545454547,
|
1177 |
+
"loss": 3.8951,
|
1178 |
+
"step": 1950
|
1179 |
+
},
|
1180 |
+
{
|
1181 |
+
"epoch": 0.12,
|
1182 |
+
"learning_rate": 0.002203030303030303,
|
1183 |
+
"loss": 4.041,
|
1184 |
+
"step": 1960
|
1185 |
+
},
|
1186 |
+
{
|
1187 |
+
"epoch": 0.12,
|
1188 |
+
"learning_rate": 0.002201515151515152,
|
1189 |
+
"loss": 4.4762,
|
1190 |
+
"step": 1970
|
1191 |
+
},
|
1192 |
+
{
|
1193 |
+
"epoch": 0.12,
|
1194 |
+
"learning_rate": 0.0022,
|
1195 |
+
"loss": 4.225,
|
1196 |
+
"step": 1980
|
1197 |
+
},
|
1198 |
+
{
|
1199 |
+
"epoch": 0.12,
|
1200 |
+
"learning_rate": 0.0021984848484848485,
|
1201 |
+
"loss": 4.4705,
|
1202 |
+
"step": 1990
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 0.12,
|
1206 |
+
"learning_rate": 0.002196969696969697,
|
1207 |
+
"loss": 4.2803,
|
1208 |
+
"step": 2000
|
1209 |
+
},
|
1210 |
+
{
|
1211 |
+
"epoch": 0.12,
|
1212 |
+
"learning_rate": 0.0021954545454545456,
|
1213 |
+
"loss": 4.0248,
|
1214 |
+
"step": 2010
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 0.12,
|
1218 |
+
"learning_rate": 0.002193939393939394,
|
1219 |
+
"loss": 4.09,
|
1220 |
+
"step": 2020
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"epoch": 0.12,
|
1224 |
+
"learning_rate": 0.0021924242424242422,
|
1225 |
+
"loss": 4.2914,
|
1226 |
+
"step": 2030
|
1227 |
+
},
|
1228 |
+
{
|
1229 |
+
"epoch": 0.12,
|
1230 |
+
"learning_rate": 0.002190909090909091,
|
1231 |
+
"loss": 4.1557,
|
1232 |
+
"step": 2040
|
1233 |
+
},
|
1234 |
+
{
|
1235 |
+
"epoch": 0.13,
|
1236 |
+
"learning_rate": 0.0021893939393939394,
|
1237 |
+
"loss": 4.041,
|
1238 |
+
"step": 2050
|
1239 |
+
},
|
1240 |
+
{
|
1241 |
+
"epoch": 0.13,
|
1242 |
+
"learning_rate": 0.0021878787878787877,
|
1243 |
+
"loss": 4.6293,
|
1244 |
+
"step": 2060
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 0.13,
|
1248 |
+
"learning_rate": 0.0021863636363636365,
|
1249 |
+
"loss": 4.2543,
|
1250 |
+
"step": 2070
|
1251 |
+
},
|
1252 |
+
{
|
1253 |
+
"epoch": 0.13,
|
1254 |
+
"learning_rate": 0.002184848484848485,
|
1255 |
+
"loss": 4.3525,
|
1256 |
+
"step": 2080
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"epoch": 0.13,
|
1260 |
+
"learning_rate": 0.002183333333333333,
|
1261 |
+
"loss": 4.2623,
|
1262 |
+
"step": 2090
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 0.13,
|
1266 |
+
"learning_rate": 0.002181818181818182,
|
1267 |
+
"loss": 4.3332,
|
1268 |
+
"step": 2100
|
1269 |
+
},
|
1270 |
+
{
|
1271 |
+
"epoch": 0.13,
|
1272 |
+
"learning_rate": 0.0021803030303030302,
|
1273 |
+
"loss": 4.4281,
|
1274 |
+
"step": 2110
|
1275 |
+
},
|
1276 |
+
{
|
1277 |
+
"epoch": 0.13,
|
1278 |
+
"learning_rate": 0.0021787878787878786,
|
1279 |
+
"loss": 4.3771,
|
1280 |
+
"step": 2120
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 0.13,
|
1284 |
+
"learning_rate": 0.0021772727272727273,
|
1285 |
+
"loss": 4.4289,
|
1286 |
+
"step": 2130
|
1287 |
+
},
|
1288 |
+
{
|
1289 |
+
"epoch": 0.13,
|
1290 |
+
"learning_rate": 0.002175757575757576,
|
1291 |
+
"loss": 3.9854,
|
1292 |
+
"step": 2140
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"epoch": 0.13,
|
1296 |
+
"learning_rate": 0.0021742424242424245,
|
1297 |
+
"loss": 4.7166,
|
1298 |
+
"step": 2150
|
1299 |
+
},
|
1300 |
+
{
|
1301 |
+
"epoch": 0.13,
|
1302 |
+
"learning_rate": 0.002172727272727273,
|
1303 |
+
"loss": 4.2908,
|
1304 |
+
"step": 2160
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"epoch": 0.13,
|
1308 |
+
"learning_rate": 0.0021712121212121216,
|
1309 |
+
"loss": 4.5039,
|
1310 |
+
"step": 2170
|
1311 |
+
},
|
1312 |
+
{
|
1313 |
+
"epoch": 0.13,
|
1314 |
+
"learning_rate": 0.00216969696969697,
|
1315 |
+
"loss": 4.2756,
|
1316 |
+
"step": 2180
|
1317 |
+
},
|
1318 |
+
{
|
1319 |
+
"epoch": 0.13,
|
1320 |
+
"learning_rate": 0.0021681818181818182,
|
1321 |
+
"loss": 4.1209,
|
1322 |
+
"step": 2190
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 0.13,
|
1326 |
+
"learning_rate": 0.002166666666666667,
|
1327 |
+
"loss": 3.9537,
|
1328 |
+
"step": 2200
|
1329 |
+
},
|
1330 |
+
{
|
1331 |
+
"epoch": 0.13,
|
1332 |
+
"learning_rate": 0.0021651515151515153,
|
1333 |
+
"loss": 4.2012,
|
1334 |
+
"step": 2210
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"epoch": 0.14,
|
1338 |
+
"learning_rate": 0.0021636363636363637,
|
1339 |
+
"loss": 4.1775,
|
1340 |
+
"step": 2220
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 0.14,
|
1344 |
+
"learning_rate": 0.002162121212121212,
|
1345 |
+
"loss": 4.1004,
|
1346 |
+
"step": 2230
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"epoch": 0.14,
|
1350 |
+
"learning_rate": 0.0021606060606060608,
|
1351 |
+
"loss": 4.5125,
|
1352 |
+
"step": 2240
|
1353 |
+
},
|
1354 |
+
{
|
1355 |
+
"epoch": 0.14,
|
1356 |
+
"learning_rate": 0.002159090909090909,
|
1357 |
+
"loss": 4.1016,
|
1358 |
+
"step": 2250
|
1359 |
+
},
|
1360 |
+
{
|
1361 |
+
"epoch": 0.14,
|
1362 |
+
"learning_rate": 0.0021575757575757575,
|
1363 |
+
"loss": 4.1955,
|
1364 |
+
"step": 2260
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 0.14,
|
1368 |
+
"learning_rate": 0.0021560606060606062,
|
1369 |
+
"loss": 4.3717,
|
1370 |
+
"step": 2270
|
1371 |
+
},
|
1372 |
+
{
|
1373 |
+
"epoch": 0.14,
|
1374 |
+
"learning_rate": 0.0021545454545454546,
|
1375 |
+
"loss": 4.6578,
|
1376 |
+
"step": 2280
|
1377 |
+
},
|
1378 |
+
{
|
1379 |
+
"epoch": 0.14,
|
1380 |
+
"learning_rate": 0.002153030303030303,
|
1381 |
+
"loss": 4.5115,
|
1382 |
+
"step": 2290
|
1383 |
+
},
|
1384 |
+
{
|
1385 |
+
"epoch": 0.14,
|
1386 |
+
"learning_rate": 0.0021515151515151517,
|
1387 |
+
"loss": 4.4395,
|
1388 |
+
"step": 2300
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 0.14,
|
1392 |
+
"learning_rate": 0.00215,
|
1393 |
+
"loss": 4.1674,
|
1394 |
+
"step": 2310
|
1395 |
+
},
|
1396 |
+
{
|
1397 |
+
"epoch": 0.14,
|
1398 |
+
"learning_rate": 0.0021484848484848483,
|
1399 |
+
"loss": 4.1488,
|
1400 |
+
"step": 2320
|
1401 |
+
},
|
1402 |
+
{
|
1403 |
+
"epoch": 0.14,
|
1404 |
+
"learning_rate": 0.002146969696969697,
|
1405 |
+
"loss": 4.0652,
|
1406 |
+
"step": 2330
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 0.14,
|
1410 |
+
"learning_rate": 0.0021454545454545454,
|
1411 |
+
"loss": 4.2736,
|
1412 |
+
"step": 2340
|
1413 |
+
},
|
1414 |
+
{
|
1415 |
+
"epoch": 0.14,
|
1416 |
+
"learning_rate": 0.0021439393939393938,
|
1417 |
+
"loss": 4.2018,
|
1418 |
+
"step": 2350
|
1419 |
+
},
|
1420 |
+
{
|
1421 |
+
"epoch": 0.14,
|
1422 |
+
"learning_rate": 0.0021424242424242426,
|
1423 |
+
"loss": 4.3178,
|
1424 |
+
"step": 2360
|
1425 |
+
},
|
1426 |
+
{
|
1427 |
+
"epoch": 0.14,
|
1428 |
+
"learning_rate": 0.002140909090909091,
|
1429 |
+
"loss": 4.5182,
|
1430 |
+
"step": 2370
|
1431 |
+
},
|
1432 |
+
{
|
1433 |
+
"epoch": 0.15,
|
1434 |
+
"learning_rate": 0.0021393939393939392,
|
1435 |
+
"loss": 4.4102,
|
1436 |
+
"step": 2380
|
1437 |
+
},
|
1438 |
+
{
|
1439 |
+
"epoch": 0.15,
|
1440 |
+
"learning_rate": 0.002137878787878788,
|
1441 |
+
"loss": 4.392,
|
1442 |
+
"step": 2390
|
1443 |
+
},
|
1444 |
+
{
|
1445 |
+
"epoch": 0.15,
|
1446 |
+
"learning_rate": 0.0021363636363636363,
|
1447 |
+
"loss": 4.2674,
|
1448 |
+
"step": 2400
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 0.15,
|
1452 |
+
"learning_rate": 0.0021348484848484847,
|
1453 |
+
"loss": 3.9971,
|
1454 |
+
"step": 2410
|
1455 |
+
},
|
1456 |
+
{
|
1457 |
+
"epoch": 0.15,
|
1458 |
+
"learning_rate": 0.0021333333333333334,
|
1459 |
+
"loss": 4.4205,
|
1460 |
+
"step": 2420
|
1461 |
+
},
|
1462 |
+
{
|
1463 |
+
"epoch": 0.15,
|
1464 |
+
"learning_rate": 0.002131818181818182,
|
1465 |
+
"loss": 4.0297,
|
1466 |
+
"step": 2430
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 0.15,
|
1470 |
+
"learning_rate": 0.0021303030303030305,
|
1471 |
+
"loss": 4.0076,
|
1472 |
+
"step": 2440
|
1473 |
+
},
|
1474 |
+
{
|
1475 |
+
"epoch": 0.15,
|
1476 |
+
"learning_rate": 0.002128787878787879,
|
1477 |
+
"loss": 4.1734,
|
1478 |
+
"step": 2450
|
1479 |
+
},
|
1480 |
+
{
|
1481 |
+
"epoch": 0.15,
|
1482 |
+
"learning_rate": 0.002127272727272727,
|
1483 |
+
"loss": 4.0545,
|
1484 |
+
"step": 2460
|
1485 |
+
},
|
1486 |
+
{
|
1487 |
+
"epoch": 0.15,
|
1488 |
+
"learning_rate": 0.002125757575757576,
|
1489 |
+
"loss": 3.9951,
|
1490 |
+
"step": 2470
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 0.15,
|
1494 |
+
"learning_rate": 0.0021242424242424243,
|
1495 |
+
"loss": 4.2332,
|
1496 |
+
"step": 2480
|
1497 |
+
},
|
1498 |
+
{
|
1499 |
+
"epoch": 0.15,
|
1500 |
+
"learning_rate": 0.0021227272727272727,
|
1501 |
+
"loss": 3.9803,
|
1502 |
+
"step": 2490
|
1503 |
+
},
|
1504 |
+
{
|
1505 |
+
"epoch": 0.15,
|
1506 |
+
"learning_rate": 0.0021212121212121214,
|
1507 |
+
"loss": 4.5166,
|
1508 |
+
"step": 2500
|
1509 |
+
},
|
1510 |
+
{
|
1511 |
+
"epoch": 0.15,
|
1512 |
+
"learning_rate": 0.0021196969696969698,
|
1513 |
+
"loss": 4.1238,
|
1514 |
+
"step": 2510
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 0.15,
|
1518 |
+
"learning_rate": 0.002118181818181818,
|
1519 |
+
"loss": 3.9596,
|
1520 |
+
"step": 2520
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"epoch": 0.15,
|
1524 |
+
"learning_rate": 0.002116666666666667,
|
1525 |
+
"loss": 4.0205,
|
1526 |
+
"step": 2530
|
1527 |
+
},
|
1528 |
+
{
|
1529 |
+
"epoch": 0.15,
|
1530 |
+
"learning_rate": 0.002115151515151515,
|
1531 |
+
"loss": 4.4902,
|
1532 |
+
"step": 2540
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 0.16,
|
1536 |
+
"learning_rate": 0.0021136363636363635,
|
1537 |
+
"loss": 4.3045,
|
1538 |
+
"step": 2550
|
1539 |
+
},
|
1540 |
+
{
|
1541 |
+
"epoch": 0.16,
|
1542 |
+
"learning_rate": 0.0021121212121212123,
|
1543 |
+
"loss": 3.9855,
|
1544 |
+
"step": 2560
|
1545 |
+
},
|
1546 |
+
{
|
1547 |
+
"epoch": 0.16,
|
1548 |
+
"learning_rate": 0.0021106060606060606,
|
1549 |
+
"loss": 4.216,
|
1550 |
+
"step": 2570
|
1551 |
+
},
|
1552 |
+
{
|
1553 |
+
"epoch": 0.16,
|
1554 |
+
"learning_rate": 0.002109090909090909,
|
1555 |
+
"loss": 4.4146,
|
1556 |
+
"step": 2580
|
1557 |
+
},
|
1558 |
+
{
|
1559 |
+
"epoch": 0.16,
|
1560 |
+
"learning_rate": 0.0021075757575757578,
|
1561 |
+
"loss": 3.9723,
|
1562 |
+
"step": 2590
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 0.16,
|
1566 |
+
"learning_rate": 0.002106060606060606,
|
1567 |
+
"loss": 4.2469,
|
1568 |
+
"step": 2600
|
1569 |
+
},
|
1570 |
+
{
|
1571 |
+
"epoch": 0.16,
|
1572 |
+
"learning_rate": 0.0021045454545454544,
|
1573 |
+
"loss": 3.9295,
|
1574 |
+
"step": 2610
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 0.16,
|
1578 |
+
"learning_rate": 0.002103030303030303,
|
1579 |
+
"loss": 4.2799,
|
1580 |
+
"step": 2620
|
1581 |
+
},
|
1582 |
+
{
|
1583 |
+
"epoch": 0.16,
|
1584 |
+
"learning_rate": 0.0021015151515151515,
|
1585 |
+
"loss": 4.1453,
|
1586 |
+
"step": 2630
|
1587 |
+
},
|
1588 |
+
{
|
1589 |
+
"epoch": 0.16,
|
1590 |
+
"learning_rate": 0.0021,
|
1591 |
+
"loss": 4.1547,
|
1592 |
+
"step": 2640
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 0.16,
|
1596 |
+
"learning_rate": 0.0020984848484848486,
|
1597 |
+
"loss": 4.2727,
|
1598 |
+
"step": 2650
|
1599 |
+
},
|
1600 |
+
{
|
1601 |
+
"epoch": 0.16,
|
1602 |
+
"learning_rate": 0.002096969696969697,
|
1603 |
+
"loss": 4.1533,
|
1604 |
+
"step": 2660
|
1605 |
+
},
|
1606 |
+
{
|
1607 |
+
"epoch": 0.16,
|
1608 |
+
"learning_rate": 0.0020954545454545453,
|
1609 |
+
"loss": 3.9719,
|
1610 |
+
"step": 2670
|
1611 |
+
},
|
1612 |
+
{
|
1613 |
+
"epoch": 0.16,
|
1614 |
+
"learning_rate": 0.002093939393939394,
|
1615 |
+
"loss": 4.3705,
|
1616 |
+
"step": 2680
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 0.16,
|
1620 |
+
"learning_rate": 0.0020924242424242424,
|
1621 |
+
"loss": 3.7813,
|
1622 |
+
"step": 2690
|
1623 |
+
},
|
1624 |
+
{
|
1625 |
+
"epoch": 0.16,
|
1626 |
+
"learning_rate": 0.0020909090909090908,
|
1627 |
+
"loss": 4.1619,
|
1628 |
+
"step": 2700
|
1629 |
+
},
|
1630 |
+
{
|
1631 |
+
"epoch": 0.17,
|
1632 |
+
"learning_rate": 0.0020893939393939395,
|
1633 |
+
"loss": 3.8096,
|
1634 |
+
"step": 2710
|
1635 |
+
},
|
1636 |
+
{
|
1637 |
+
"epoch": 0.17,
|
1638 |
+
"learning_rate": 0.002087878787878788,
|
1639 |
+
"loss": 4.2779,
|
1640 |
+
"step": 2720
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 0.17,
|
1644 |
+
"learning_rate": 0.0020863636363636366,
|
1645 |
+
"loss": 4.152,
|
1646 |
+
"step": 2730
|
1647 |
+
},
|
1648 |
+
{
|
1649 |
+
"epoch": 0.17,
|
1650 |
+
"learning_rate": 0.002084848484848485,
|
1651 |
+
"loss": 4.6047,
|
1652 |
+
"step": 2740
|
1653 |
+
},
|
1654 |
+
{
|
1655 |
+
"epoch": 0.17,
|
1656 |
+
"learning_rate": 0.0020833333333333333,
|
1657 |
+
"loss": 3.9848,
|
1658 |
+
"step": 2750
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 0.17,
|
1662 |
+
"learning_rate": 0.002081818181818182,
|
1663 |
+
"loss": 4.068,
|
1664 |
+
"step": 2760
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 0.17,
|
1668 |
+
"learning_rate": 0.0020803030303030304,
|
1669 |
+
"loss": 4.0783,
|
1670 |
+
"step": 2770
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 0.17,
|
1674 |
+
"learning_rate": 0.0020787878787878787,
|
1675 |
+
"loss": 3.8646,
|
1676 |
+
"step": 2780
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 0.17,
|
1680 |
+
"learning_rate": 0.0020772727272727275,
|
1681 |
+
"loss": 4.4756,
|
1682 |
+
"step": 2790
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 0.17,
|
1686 |
+
"learning_rate": 0.002075757575757576,
|
1687 |
+
"loss": 4.0518,
|
1688 |
+
"step": 2800
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 0.17,
|
1692 |
+
"learning_rate": 0.002074242424242424,
|
1693 |
+
"loss": 4.1688,
|
1694 |
+
"step": 2810
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 0.17,
|
1698 |
+
"learning_rate": 0.002072727272727273,
|
1699 |
+
"loss": 4.3254,
|
1700 |
+
"step": 2820
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 0.17,
|
1704 |
+
"learning_rate": 0.0020712121212121213,
|
1705 |
+
"loss": 4.3361,
|
1706 |
+
"step": 2830
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 0.17,
|
1710 |
+
"learning_rate": 0.0020696969696969696,
|
1711 |
+
"loss": 4.5381,
|
1712 |
+
"step": 2840
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 0.17,
|
1716 |
+
"learning_rate": 0.0020681818181818184,
|
1717 |
+
"loss": 4.1404,
|
1718 |
+
"step": 2850
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 0.17,
|
1722 |
+
"learning_rate": 0.0020666666666666667,
|
1723 |
+
"loss": 4.3307,
|
1724 |
+
"step": 2860
|
1725 |
+
},
|
1726 |
+
{
|
1727 |
+
"epoch": 0.18,
|
1728 |
+
"learning_rate": 0.002065151515151515,
|
1729 |
+
"loss": 4.2369,
|
1730 |
+
"step": 2870
|
1731 |
+
},
|
1732 |
+
{
|
1733 |
+
"epoch": 0.18,
|
1734 |
+
"learning_rate": 0.002063636363636364,
|
1735 |
+
"loss": 3.973,
|
1736 |
+
"step": 2880
|
1737 |
+
},
|
1738 |
+
{
|
1739 |
+
"epoch": 0.18,
|
1740 |
+
"learning_rate": 0.002062121212121212,
|
1741 |
+
"loss": 4.0045,
|
1742 |
+
"step": 2890
|
1743 |
+
},
|
1744 |
+
{
|
1745 |
+
"epoch": 0.18,
|
1746 |
+
"learning_rate": 0.0020606060606060605,
|
1747 |
+
"loss": 3.717,
|
1748 |
+
"step": 2900
|
1749 |
+
},
|
1750 |
+
{
|
1751 |
+
"epoch": 0.18,
|
1752 |
+
"learning_rate": 0.002059090909090909,
|
1753 |
+
"loss": 4.3682,
|
1754 |
+
"step": 2910
|
1755 |
+
},
|
1756 |
+
{
|
1757 |
+
"epoch": 0.18,
|
1758 |
+
"learning_rate": 0.0020575757575757576,
|
1759 |
+
"loss": 4.2744,
|
1760 |
+
"step": 2920
|
1761 |
+
},
|
1762 |
+
{
|
1763 |
+
"epoch": 0.18,
|
1764 |
+
"learning_rate": 0.002056060606060606,
|
1765 |
+
"loss": 4.0842,
|
1766 |
+
"step": 2930
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 0.18,
|
1770 |
+
"learning_rate": 0.0020545454545454543,
|
1771 |
+
"loss": 4.4441,
|
1772 |
+
"step": 2940
|
1773 |
+
},
|
1774 |
+
{
|
1775 |
+
"epoch": 0.18,
|
1776 |
+
"learning_rate": 0.002053030303030303,
|
1777 |
+
"loss": 3.993,
|
1778 |
+
"step": 2950
|
1779 |
+
},
|
1780 |
+
{
|
1781 |
+
"epoch": 0.18,
|
1782 |
+
"learning_rate": 0.0020515151515151514,
|
1783 |
+
"loss": 3.9664,
|
1784 |
+
"step": 2960
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"epoch": 0.18,
|
1788 |
+
"learning_rate": 0.0020499999999999997,
|
1789 |
+
"loss": 4.2275,
|
1790 |
+
"step": 2970
|
1791 |
+
},
|
1792 |
+
{
|
1793 |
+
"epoch": 0.18,
|
1794 |
+
"learning_rate": 0.0020484848484848485,
|
1795 |
+
"loss": 3.7014,
|
1796 |
+
"step": 2980
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"epoch": 0.18,
|
1800 |
+
"learning_rate": 0.0020469696969696973,
|
1801 |
+
"loss": 3.8799,
|
1802 |
+
"step": 2990
|
1803 |
+
},
|
1804 |
+
{
|
1805 |
+
"epoch": 0.18,
|
1806 |
+
"learning_rate": 0.0020454545454545456,
|
1807 |
+
"loss": 3.9643,
|
1808 |
+
"step": 3000
|
1809 |
+
},
|
1810 |
+
{
|
1811 |
+
"epoch": 0.18,
|
1812 |
+
"learning_rate": 0.002043939393939394,
|
1813 |
+
"loss": 4.0553,
|
1814 |
+
"step": 3010
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 0.18,
|
1818 |
+
"learning_rate": 0.0020424242424242427,
|
1819 |
+
"loss": 4.0256,
|
1820 |
+
"step": 3020
|
1821 |
+
},
|
1822 |
+
{
|
1823 |
+
"epoch": 0.18,
|
1824 |
+
"learning_rate": 0.002040909090909091,
|
1825 |
+
"loss": 4.1273,
|
1826 |
+
"step": 3030
|
1827 |
+
},
|
1828 |
+
{
|
1829 |
+
"epoch": 0.19,
|
1830 |
+
"learning_rate": 0.0020393939393939394,
|
1831 |
+
"loss": 4.0736,
|
1832 |
+
"step": 3040
|
1833 |
+
},
|
1834 |
+
{
|
1835 |
+
"epoch": 0.19,
|
1836 |
+
"learning_rate": 0.002037878787878788,
|
1837 |
+
"loss": 4.1354,
|
1838 |
+
"step": 3050
|
1839 |
+
},
|
1840 |
+
{
|
1841 |
+
"epoch": 0.19,
|
1842 |
+
"learning_rate": 0.0020363636363636365,
|
1843 |
+
"loss": 4.2006,
|
1844 |
+
"step": 3060
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 0.19,
|
1848 |
+
"learning_rate": 0.002034848484848485,
|
1849 |
+
"loss": 4.284,
|
1850 |
+
"step": 3070
|
1851 |
+
},
|
1852 |
+
{
|
1853 |
+
"epoch": 0.19,
|
1854 |
+
"learning_rate": 0.0020333333333333336,
|
1855 |
+
"loss": 4.191,
|
1856 |
+
"step": 3080
|
1857 |
+
},
|
1858 |
+
{
|
1859 |
+
"epoch": 0.19,
|
1860 |
+
"learning_rate": 0.002031818181818182,
|
1861 |
+
"loss": 4.3771,
|
1862 |
+
"step": 3090
|
1863 |
+
},
|
1864 |
+
{
|
1865 |
+
"epoch": 0.19,
|
1866 |
+
"learning_rate": 0.0020303030303030303,
|
1867 |
+
"loss": 3.9966,
|
1868 |
+
"step": 3100
|
1869 |
+
},
|
1870 |
+
{
|
1871 |
+
"epoch": 0.19,
|
1872 |
+
"learning_rate": 0.002028787878787879,
|
1873 |
+
"loss": 4.1867,
|
1874 |
+
"step": 3110
|
1875 |
+
},
|
1876 |
+
{
|
1877 |
+
"epoch": 0.19,
|
1878 |
+
"learning_rate": 0.0020272727272727274,
|
1879 |
+
"loss": 3.9691,
|
1880 |
+
"step": 3120
|
1881 |
+
},
|
1882 |
+
{
|
1883 |
+
"epoch": 0.19,
|
1884 |
+
"learning_rate": 0.0020257575757575757,
|
1885 |
+
"loss": 3.9979,
|
1886 |
+
"step": 3130
|
1887 |
+
},
|
1888 |
+
{
|
1889 |
+
"epoch": 0.19,
|
1890 |
+
"learning_rate": 0.002024242424242424,
|
1891 |
+
"loss": 4.3219,
|
1892 |
+
"step": 3140
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 0.19,
|
1896 |
+
"learning_rate": 0.002022727272727273,
|
1897 |
+
"loss": 3.9918,
|
1898 |
+
"step": 3150
|
1899 |
+
},
|
1900 |
+
{
|
1901 |
+
"epoch": 0.19,
|
1902 |
+
"learning_rate": 0.002021212121212121,
|
1903 |
+
"loss": 4.3541,
|
1904 |
+
"step": 3160
|
1905 |
+
},
|
1906 |
+
{
|
1907 |
+
"epoch": 0.19,
|
1908 |
+
"learning_rate": 0.0020196969696969695,
|
1909 |
+
"loss": 4.2801,
|
1910 |
+
"step": 3170
|
1911 |
+
},
|
1912 |
+
{
|
1913 |
+
"epoch": 0.19,
|
1914 |
+
"learning_rate": 0.0020181818181818183,
|
1915 |
+
"loss": 3.8957,
|
1916 |
+
"step": 3180
|
1917 |
+
},
|
1918 |
+
{
|
1919 |
+
"epoch": 0.19,
|
1920 |
+
"learning_rate": 0.0020166666666666666,
|
1921 |
+
"loss": 4.8797,
|
1922 |
+
"step": 3190
|
1923 |
+
},
|
1924 |
+
{
|
1925 |
+
"epoch": 0.2,
|
1926 |
+
"learning_rate": 0.002015151515151515,
|
1927 |
+
"loss": 4.1672,
|
1928 |
+
"step": 3200
|
1929 |
+
},
|
1930 |
+
{
|
1931 |
+
"epoch": 0.2,
|
1932 |
+
"learning_rate": 0.0020136363636363637,
|
1933 |
+
"loss": 4.1686,
|
1934 |
+
"step": 3210
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"epoch": 0.2,
|
1938 |
+
"learning_rate": 0.002012121212121212,
|
1939 |
+
"loss": 4.3756,
|
1940 |
+
"step": 3220
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 0.2,
|
1944 |
+
"learning_rate": 0.0020106060606060604,
|
1945 |
+
"loss": 4.307,
|
1946 |
+
"step": 3230
|
1947 |
+
},
|
1948 |
+
{
|
1949 |
+
"epoch": 0.2,
|
1950 |
+
"learning_rate": 0.002009090909090909,
|
1951 |
+
"loss": 4.0963,
|
1952 |
+
"step": 3240
|
1953 |
+
},
|
1954 |
+
{
|
1955 |
+
"epoch": 0.2,
|
1956 |
+
"learning_rate": 0.0020075757575757575,
|
1957 |
+
"loss": 3.9398,
|
1958 |
+
"step": 3250
|
1959 |
+
},
|
1960 |
+
{
|
1961 |
+
"epoch": 0.2,
|
1962 |
+
"learning_rate": 0.002006060606060606,
|
1963 |
+
"loss": 4.008,
|
1964 |
+
"step": 3260
|
1965 |
+
},
|
1966 |
+
{
|
1967 |
+
"epoch": 0.2,
|
1968 |
+
"learning_rate": 0.0020045454545454546,
|
1969 |
+
"loss": 3.7615,
|
1970 |
+
"step": 3270
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 0.2,
|
1974 |
+
"learning_rate": 0.0020030303030303034,
|
1975 |
+
"loss": 4.1881,
|
1976 |
+
"step": 3280
|
1977 |
+
},
|
1978 |
+
{
|
1979 |
+
"epoch": 0.2,
|
1980 |
+
"learning_rate": 0.0020015151515151517,
|
1981 |
+
"loss": 3.8508,
|
1982 |
+
"step": 3290
|
1983 |
+
},
|
1984 |
+
{
|
1985 |
+
"epoch": 0.2,
|
1986 |
+
"learning_rate": 0.002,
|
1987 |
+
"loss": 4.3887,
|
1988 |
+
"step": 3300
|
1989 |
+
},
|
1990 |
+
{
|
1991 |
+
"epoch": 0.2,
|
1992 |
+
"learning_rate": 0.001998484848484849,
|
1993 |
+
"loss": 4.0209,
|
1994 |
+
"step": 3310
|
1995 |
+
},
|
1996 |
+
{
|
1997 |
+
"epoch": 0.2,
|
1998 |
+
"learning_rate": 0.001996969696969697,
|
1999 |
+
"loss": 4.1906,
|
2000 |
+
"step": 3320
|
2001 |
+
},
|
2002 |
+
{
|
2003 |
+
"epoch": 0.2,
|
2004 |
+
"learning_rate": 0.0019954545454545455,
|
2005 |
+
"loss": 4.1512,
|
2006 |
+
"step": 3330
|
2007 |
+
},
|
2008 |
+
{
|
2009 |
+
"epoch": 0.2,
|
2010 |
+
"learning_rate": 0.0019939393939393943,
|
2011 |
+
"loss": 4.2525,
|
2012 |
+
"step": 3340
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"epoch": 0.2,
|
2016 |
+
"learning_rate": 0.0019924242424242426,
|
2017 |
+
"loss": 4.3814,
|
2018 |
+
"step": 3350
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 0.2,
|
2022 |
+
"learning_rate": 0.001990909090909091,
|
2023 |
+
"loss": 4.0068,
|
2024 |
+
"step": 3360
|
2025 |
+
},
|
2026 |
+
{
|
2027 |
+
"epoch": 0.21,
|
2028 |
+
"learning_rate": 0.0019893939393939393,
|
2029 |
+
"loss": 4.3184,
|
2030 |
+
"step": 3370
|
2031 |
+
},
|
2032 |
+
{
|
2033 |
+
"epoch": 0.21,
|
2034 |
+
"learning_rate": 0.001987878787878788,
|
2035 |
+
"loss": 4.4627,
|
2036 |
+
"step": 3380
|
2037 |
+
},
|
2038 |
+
{
|
2039 |
+
"epoch": 0.21,
|
2040 |
+
"learning_rate": 0.0019863636363636364,
|
2041 |
+
"loss": 4.1746,
|
2042 |
+
"step": 3390
|
2043 |
+
},
|
2044 |
+
{
|
2045 |
+
"epoch": 0.21,
|
2046 |
+
"learning_rate": 0.0019848484848484847,
|
2047 |
+
"loss": 3.9419,
|
2048 |
+
"step": 3400
|
2049 |
+
},
|
2050 |
+
{
|
2051 |
+
"epoch": 0.21,
|
2052 |
+
"learning_rate": 0.0019833333333333335,
|
2053 |
+
"loss": 4.0953,
|
2054 |
+
"step": 3410
|
2055 |
+
},
|
2056 |
+
{
|
2057 |
+
"epoch": 0.21,
|
2058 |
+
"learning_rate": 0.001981818181818182,
|
2059 |
+
"loss": 4.3074,
|
2060 |
+
"step": 3420
|
2061 |
+
},
|
2062 |
+
{
|
2063 |
+
"epoch": 0.21,
|
2064 |
+
"learning_rate": 0.00198030303030303,
|
2065 |
+
"loss": 4.2008,
|
2066 |
+
"step": 3430
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"epoch": 0.21,
|
2070 |
+
"learning_rate": 0.001978787878787879,
|
2071 |
+
"loss": 4.1914,
|
2072 |
+
"step": 3440
|
2073 |
+
},
|
2074 |
+
{
|
2075 |
+
"epoch": 0.21,
|
2076 |
+
"learning_rate": 0.0019772727272727273,
|
2077 |
+
"loss": 4.0264,
|
2078 |
+
"step": 3450
|
2079 |
+
},
|
2080 |
+
{
|
2081 |
+
"epoch": 0.21,
|
2082 |
+
"learning_rate": 0.0019757575757575756,
|
2083 |
+
"loss": 4.1937,
|
2084 |
+
"step": 3460
|
2085 |
+
},
|
2086 |
+
{
|
2087 |
+
"epoch": 0.21,
|
2088 |
+
"learning_rate": 0.0019742424242424244,
|
2089 |
+
"loss": 4.067,
|
2090 |
+
"step": 3470
|
2091 |
+
},
|
2092 |
+
{
|
2093 |
+
"epoch": 0.21,
|
2094 |
+
"learning_rate": 0.0019727272727272727,
|
2095 |
+
"loss": 4.2822,
|
2096 |
+
"step": 3480
|
2097 |
+
},
|
2098 |
+
{
|
2099 |
+
"epoch": 0.21,
|
2100 |
+
"learning_rate": 0.001971212121212121,
|
2101 |
+
"loss": 3.798,
|
2102 |
+
"step": 3490
|
2103 |
+
},
|
2104 |
+
{
|
2105 |
+
"epoch": 0.21,
|
2106 |
+
"learning_rate": 0.00196969696969697,
|
2107 |
+
"loss": 4.3059,
|
2108 |
+
"step": 3500
|
2109 |
+
},
|
2110 |
+
{
|
2111 |
+
"epoch": 0.21,
|
2112 |
+
"learning_rate": 0.001968181818181818,
|
2113 |
+
"loss": 3.8936,
|
2114 |
+
"step": 3510
|
2115 |
+
},
|
2116 |
+
{
|
2117 |
+
"epoch": 0.21,
|
2118 |
+
"learning_rate": 0.0019666666666666665,
|
2119 |
+
"loss": 4.3832,
|
2120 |
+
"step": 3520
|
2121 |
+
},
|
2122 |
+
{
|
2123 |
+
"epoch": 0.22,
|
2124 |
+
"learning_rate": 0.0019651515151515152,
|
2125 |
+
"loss": 4.3246,
|
2126 |
+
"step": 3530
|
2127 |
+
},
|
2128 |
+
{
|
2129 |
+
"epoch": 0.22,
|
2130 |
+
"learning_rate": 0.0019636363636363636,
|
2131 |
+
"loss": 4.0193,
|
2132 |
+
"step": 3540
|
2133 |
+
},
|
2134 |
+
{
|
2135 |
+
"epoch": 0.22,
|
2136 |
+
"learning_rate": 0.001962121212121212,
|
2137 |
+
"loss": 4.2828,
|
2138 |
+
"step": 3550
|
2139 |
+
},
|
2140 |
+
{
|
2141 |
+
"epoch": 0.22,
|
2142 |
+
"learning_rate": 0.0019606060606060607,
|
2143 |
+
"loss": 4.468,
|
2144 |
+
"step": 3560
|
2145 |
+
},
|
2146 |
+
{
|
2147 |
+
"epoch": 0.22,
|
2148 |
+
"learning_rate": 0.0019590909090909095,
|
2149 |
+
"loss": 4.2574,
|
2150 |
+
"step": 3570
|
2151 |
+
},
|
2152 |
+
{
|
2153 |
+
"epoch": 0.22,
|
2154 |
+
"learning_rate": 0.001957575757575758,
|
2155 |
+
"loss": 4.2453,
|
2156 |
+
"step": 3580
|
2157 |
+
},
|
2158 |
+
{
|
2159 |
+
"epoch": 0.22,
|
2160 |
+
"learning_rate": 0.001956060606060606,
|
2161 |
+
"loss": 4.1461,
|
2162 |
+
"step": 3590
|
2163 |
+
},
|
2164 |
+
{
|
2165 |
+
"epoch": 0.22,
|
2166 |
+
"learning_rate": 0.0019545454545454545,
|
2167 |
+
"loss": 4.1102,
|
2168 |
+
"step": 3600
|
2169 |
+
},
|
2170 |
+
{
|
2171 |
+
"epoch": 0.22,
|
2172 |
+
"learning_rate": 0.0019530303030303032,
|
2173 |
+
"loss": 4.5449,
|
2174 |
+
"step": 3610
|
2175 |
+
},
|
2176 |
+
{
|
2177 |
+
"epoch": 0.22,
|
2178 |
+
"learning_rate": 0.0019515151515151516,
|
2179 |
+
"loss": 3.9111,
|
2180 |
+
"step": 3620
|
2181 |
+
},
|
2182 |
+
{
|
2183 |
+
"epoch": 0.22,
|
2184 |
+
"learning_rate": 0.0019500000000000001,
|
2185 |
+
"loss": 3.9598,
|
2186 |
+
"step": 3630
|
2187 |
+
},
|
2188 |
+
{
|
2189 |
+
"epoch": 0.22,
|
2190 |
+
"learning_rate": 0.0019484848484848487,
|
2191 |
+
"loss": 4.2061,
|
2192 |
+
"step": 3640
|
2193 |
+
},
|
2194 |
+
{
|
2195 |
+
"epoch": 0.22,
|
2196 |
+
"learning_rate": 0.001946969696969697,
|
2197 |
+
"loss": 4.4254,
|
2198 |
+
"step": 3650
|
2199 |
+
},
|
2200 |
+
{
|
2201 |
+
"epoch": 0.22,
|
2202 |
+
"learning_rate": 0.0019454545454545456,
|
2203 |
+
"loss": 3.7582,
|
2204 |
+
"step": 3660
|
2205 |
+
},
|
2206 |
+
{
|
2207 |
+
"epoch": 0.22,
|
2208 |
+
"learning_rate": 0.001943939393939394,
|
2209 |
+
"loss": 4.152,
|
2210 |
+
"step": 3670
|
2211 |
+
},
|
2212 |
+
{
|
2213 |
+
"epoch": 0.22,
|
2214 |
+
"learning_rate": 0.0019424242424242425,
|
2215 |
+
"loss": 4.0951,
|
2216 |
+
"step": 3680
|
2217 |
+
},
|
2218 |
+
{
|
2219 |
+
"epoch": 0.23,
|
2220 |
+
"learning_rate": 0.001940909090909091,
|
2221 |
+
"loss": 4.1152,
|
2222 |
+
"step": 3690
|
2223 |
+
},
|
2224 |
+
{
|
2225 |
+
"epoch": 0.23,
|
2226 |
+
"learning_rate": 0.0019393939393939393,
|
2227 |
+
"loss": 4.3834,
|
2228 |
+
"step": 3700
|
2229 |
+
},
|
2230 |
+
{
|
2231 |
+
"epoch": 0.23,
|
2232 |
+
"learning_rate": 0.001937878787878788,
|
2233 |
+
"loss": 4.3691,
|
2234 |
+
"step": 3710
|
2235 |
+
},
|
2236 |
+
{
|
2237 |
+
"epoch": 0.23,
|
2238 |
+
"learning_rate": 0.0019363636363636365,
|
2239 |
+
"loss": 4.1271,
|
2240 |
+
"step": 3720
|
2241 |
+
},
|
2242 |
+
{
|
2243 |
+
"epoch": 0.23,
|
2244 |
+
"learning_rate": 0.0019348484848484848,
|
2245 |
+
"loss": 4.2613,
|
2246 |
+
"step": 3730
|
2247 |
+
},
|
2248 |
+
{
|
2249 |
+
"epoch": 0.23,
|
2250 |
+
"learning_rate": 0.0019333333333333333,
|
2251 |
+
"loss": 3.8348,
|
2252 |
+
"step": 3740
|
2253 |
+
},
|
2254 |
+
{
|
2255 |
+
"epoch": 0.23,
|
2256 |
+
"learning_rate": 0.001931818181818182,
|
2257 |
+
"loss": 4.1611,
|
2258 |
+
"step": 3750
|
2259 |
+
},
|
2260 |
+
{
|
2261 |
+
"epoch": 0.23,
|
2262 |
+
"learning_rate": 0.0019303030303030302,
|
2263 |
+
"loss": 4.2691,
|
2264 |
+
"step": 3760
|
2265 |
+
},
|
2266 |
+
{
|
2267 |
+
"epoch": 0.23,
|
2268 |
+
"learning_rate": 0.0019287878787878788,
|
2269 |
+
"loss": 4.2182,
|
2270 |
+
"step": 3770
|
2271 |
+
},
|
2272 |
+
{
|
2273 |
+
"epoch": 0.23,
|
2274 |
+
"learning_rate": 0.0019272727272727273,
|
2275 |
+
"loss": 4.1658,
|
2276 |
+
"step": 3780
|
2277 |
+
},
|
2278 |
+
{
|
2279 |
+
"epoch": 0.23,
|
2280 |
+
"learning_rate": 0.0019257575757575757,
|
2281 |
+
"loss": 3.9271,
|
2282 |
+
"step": 3790
|
2283 |
+
},
|
2284 |
+
{
|
2285 |
+
"epoch": 0.23,
|
2286 |
+
"learning_rate": 0.0019242424242424242,
|
2287 |
+
"loss": 3.7492,
|
2288 |
+
"step": 3800
|
2289 |
+
},
|
2290 |
+
{
|
2291 |
+
"epoch": 0.23,
|
2292 |
+
"learning_rate": 0.0019227272727272726,
|
2293 |
+
"loss": 4.0193,
|
2294 |
+
"step": 3810
|
2295 |
+
},
|
2296 |
+
{
|
2297 |
+
"epoch": 0.23,
|
2298 |
+
"learning_rate": 0.0019212121212121211,
|
2299 |
+
"loss": 4.4439,
|
2300 |
+
"step": 3820
|
2301 |
+
},
|
2302 |
+
{
|
2303 |
+
"epoch": 0.23,
|
2304 |
+
"learning_rate": 0.0019196969696969697,
|
2305 |
+
"loss": 4.0443,
|
2306 |
+
"step": 3830
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"epoch": 0.23,
|
2310 |
+
"learning_rate": 0.001918181818181818,
|
2311 |
+
"loss": 4.2902,
|
2312 |
+
"step": 3840
|
2313 |
+
},
|
2314 |
+
{
|
2315 |
+
"epoch": 0.23,
|
2316 |
+
"learning_rate": 0.0019166666666666668,
|
2317 |
+
"loss": 4.0879,
|
2318 |
+
"step": 3850
|
2319 |
+
},
|
2320 |
+
{
|
2321 |
+
"epoch": 0.24,
|
2322 |
+
"learning_rate": 0.0019151515151515153,
|
2323 |
+
"loss": 4.509,
|
2324 |
+
"step": 3860
|
2325 |
+
},
|
2326 |
+
{
|
2327 |
+
"epoch": 0.24,
|
2328 |
+
"learning_rate": 0.0019136363636363639,
|
2329 |
+
"loss": 4.2645,
|
2330 |
+
"step": 3870
|
2331 |
+
},
|
2332 |
+
{
|
2333 |
+
"epoch": 0.24,
|
2334 |
+
"learning_rate": 0.0019121212121212122,
|
2335 |
+
"loss": 3.8994,
|
2336 |
+
"step": 3880
|
2337 |
+
},
|
2338 |
+
{
|
2339 |
+
"epoch": 0.24,
|
2340 |
+
"learning_rate": 0.0019106060606060608,
|
2341 |
+
"loss": 3.8268,
|
2342 |
+
"step": 3890
|
2343 |
+
},
|
2344 |
+
{
|
2345 |
+
"epoch": 0.24,
|
2346 |
+
"learning_rate": 0.0019090909090909091,
|
2347 |
+
"loss": 4.0371,
|
2348 |
+
"step": 3900
|
2349 |
+
},
|
2350 |
+
{
|
2351 |
+
"epoch": 0.24,
|
2352 |
+
"learning_rate": 0.0019075757575757577,
|
2353 |
+
"loss": 4.2105,
|
2354 |
+
"step": 3910
|
2355 |
+
},
|
2356 |
+
{
|
2357 |
+
"epoch": 0.24,
|
2358 |
+
"learning_rate": 0.0019060606060606062,
|
2359 |
+
"loss": 4.0234,
|
2360 |
+
"step": 3920
|
2361 |
+
},
|
2362 |
+
{
|
2363 |
+
"epoch": 0.24,
|
2364 |
+
"learning_rate": 0.0019045454545454546,
|
2365 |
+
"loss": 3.8813,
|
2366 |
+
"step": 3930
|
2367 |
+
},
|
2368 |
+
{
|
2369 |
+
"epoch": 0.24,
|
2370 |
+
"learning_rate": 0.001903030303030303,
|
2371 |
+
"loss": 4.4242,
|
2372 |
+
"step": 3940
|
2373 |
+
},
|
2374 |
+
{
|
2375 |
+
"epoch": 0.24,
|
2376 |
+
"learning_rate": 0.0019015151515151517,
|
2377 |
+
"loss": 3.7244,
|
2378 |
+
"step": 3950
|
2379 |
+
},
|
2380 |
+
{
|
2381 |
+
"epoch": 0.24,
|
2382 |
+
"learning_rate": 0.0019,
|
2383 |
+
"loss": 4.2068,
|
2384 |
+
"step": 3960
|
2385 |
+
},
|
2386 |
+
{
|
2387 |
+
"epoch": 0.24,
|
2388 |
+
"learning_rate": 0.0018984848484848485,
|
2389 |
+
"loss": 4.008,
|
2390 |
+
"step": 3970
|
2391 |
+
},
|
2392 |
+
{
|
2393 |
+
"epoch": 0.24,
|
2394 |
+
"learning_rate": 0.001896969696969697,
|
2395 |
+
"loss": 4.1963,
|
2396 |
+
"step": 3980
|
2397 |
+
},
|
2398 |
+
{
|
2399 |
+
"epoch": 0.24,
|
2400 |
+
"learning_rate": 0.0018954545454545454,
|
2401 |
+
"loss": 4.5043,
|
2402 |
+
"step": 3990
|
2403 |
+
},
|
2404 |
+
{
|
2405 |
+
"epoch": 0.24,
|
2406 |
+
"learning_rate": 0.001893939393939394,
|
2407 |
+
"loss": 4.0703,
|
2408 |
+
"step": 4000
|
2409 |
+
},
|
2410 |
+
{
|
2411 |
+
"epoch": 0.24,
|
2412 |
+
"learning_rate": 0.0018924242424242425,
|
2413 |
+
"loss": 3.9598,
|
2414 |
+
"step": 4010
|
2415 |
+
},
|
2416 |
+
{
|
2417 |
+
"epoch": 0.25,
|
2418 |
+
"learning_rate": 0.0018909090909090909,
|
2419 |
+
"loss": 4.1252,
|
2420 |
+
"step": 4020
|
2421 |
+
},
|
2422 |
+
{
|
2423 |
+
"epoch": 0.25,
|
2424 |
+
"learning_rate": 0.0018893939393939394,
|
2425 |
+
"loss": 4.2848,
|
2426 |
+
"step": 4030
|
2427 |
+
},
|
2428 |
+
{
|
2429 |
+
"epoch": 0.25,
|
2430 |
+
"learning_rate": 0.0018878787878787878,
|
2431 |
+
"loss": 3.9209,
|
2432 |
+
"step": 4040
|
2433 |
+
},
|
2434 |
+
{
|
2435 |
+
"epoch": 0.25,
|
2436 |
+
"learning_rate": 0.0018863636363636363,
|
2437 |
+
"loss": 4.2768,
|
2438 |
+
"step": 4050
|
2439 |
+
},
|
2440 |
+
{
|
2441 |
+
"epoch": 0.25,
|
2442 |
+
"learning_rate": 0.0018848484848484849,
|
2443 |
+
"loss": 4.1338,
|
2444 |
+
"step": 4060
|
2445 |
+
},
|
2446 |
+
{
|
2447 |
+
"epoch": 0.25,
|
2448 |
+
"learning_rate": 0.0018833333333333332,
|
2449 |
+
"loss": 4.1549,
|
2450 |
+
"step": 4070
|
2451 |
+
},
|
2452 |
+
{
|
2453 |
+
"epoch": 0.25,
|
2454 |
+
"learning_rate": 0.0018818181818181818,
|
2455 |
+
"loss": 3.7658,
|
2456 |
+
"step": 4080
|
2457 |
+
},
|
2458 |
+
{
|
2459 |
+
"epoch": 0.25,
|
2460 |
+
"learning_rate": 0.0018803030303030303,
|
2461 |
+
"loss": 3.865,
|
2462 |
+
"step": 4090
|
2463 |
+
},
|
2464 |
+
{
|
2465 |
+
"epoch": 0.25,
|
2466 |
+
"learning_rate": 0.0018787878787878787,
|
2467 |
+
"loss": 3.9766,
|
2468 |
+
"step": 4100
|
2469 |
+
},
|
2470 |
+
{
|
2471 |
+
"epoch": 0.25,
|
2472 |
+
"learning_rate": 0.0018772727272727272,
|
2473 |
+
"loss": 4.2186,
|
2474 |
+
"step": 4110
|
2475 |
+
},
|
2476 |
+
{
|
2477 |
+
"epoch": 0.25,
|
2478 |
+
"learning_rate": 0.0018757575757575758,
|
2479 |
+
"loss": 4.3256,
|
2480 |
+
"step": 4120
|
2481 |
+
},
|
2482 |
+
{
|
2483 |
+
"epoch": 0.25,
|
2484 |
+
"learning_rate": 0.0018742424242424243,
|
2485 |
+
"loss": 4.1537,
|
2486 |
+
"step": 4130
|
2487 |
+
},
|
2488 |
+
{
|
2489 |
+
"epoch": 0.25,
|
2490 |
+
"learning_rate": 0.0018727272727272729,
|
2491 |
+
"loss": 3.8939,
|
2492 |
+
"step": 4140
|
2493 |
+
},
|
2494 |
+
{
|
2495 |
+
"epoch": 0.25,
|
2496 |
+
"learning_rate": 0.0018712121212121214,
|
2497 |
+
"loss": 4.201,
|
2498 |
+
"step": 4150
|
2499 |
+
},
|
2500 |
+
{
|
2501 |
+
"epoch": 0.25,
|
2502 |
+
"learning_rate": 0.0018696969696969698,
|
2503 |
+
"loss": 4.3982,
|
2504 |
+
"step": 4160
|
2505 |
+
},
|
2506 |
+
{
|
2507 |
+
"epoch": 0.25,
|
2508 |
+
"learning_rate": 0.0018681818181818183,
|
2509 |
+
"loss": 4.3611,
|
2510 |
+
"step": 4170
|
2511 |
+
},
|
2512 |
+
{
|
2513 |
+
"epoch": 0.25,
|
2514 |
+
"learning_rate": 0.0018666666666666669,
|
2515 |
+
"loss": 3.9762,
|
2516 |
+
"step": 4180
|
2517 |
+
},
|
2518 |
+
{
|
2519 |
+
"epoch": 0.26,
|
2520 |
+
"learning_rate": 0.0018651515151515152,
|
2521 |
+
"loss": 4.0193,
|
2522 |
+
"step": 4190
|
2523 |
+
},
|
2524 |
+
{
|
2525 |
+
"epoch": 0.26,
|
2526 |
+
"learning_rate": 0.0018636363636363638,
|
2527 |
+
"loss": 4.507,
|
2528 |
+
"step": 4200
|
2529 |
+
},
|
2530 |
+
{
|
2531 |
+
"epoch": 0.26,
|
2532 |
+
"learning_rate": 0.0018621212121212123,
|
2533 |
+
"loss": 4.2193,
|
2534 |
+
"step": 4210
|
2535 |
+
},
|
2536 |
+
{
|
2537 |
+
"epoch": 0.26,
|
2538 |
+
"learning_rate": 0.0018606060606060606,
|
2539 |
+
"loss": 4.0932,
|
2540 |
+
"step": 4220
|
2541 |
+
},
|
2542 |
+
{
|
2543 |
+
"epoch": 0.26,
|
2544 |
+
"learning_rate": 0.0018590909090909092,
|
2545 |
+
"loss": 3.9719,
|
2546 |
+
"step": 4230
|
2547 |
+
},
|
2548 |
+
{
|
2549 |
+
"epoch": 0.26,
|
2550 |
+
"learning_rate": 0.0018575757575757575,
|
2551 |
+
"loss": 4.4113,
|
2552 |
+
"step": 4240
|
2553 |
+
},
|
2554 |
+
{
|
2555 |
+
"epoch": 0.26,
|
2556 |
+
"learning_rate": 0.001856060606060606,
|
2557 |
+
"loss": 4.0824,
|
2558 |
+
"step": 4250
|
2559 |
+
},
|
2560 |
+
{
|
2561 |
+
"epoch": 0.26,
|
2562 |
+
"learning_rate": 0.0018545454545454546,
|
2563 |
+
"loss": 3.5553,
|
2564 |
+
"step": 4260
|
2565 |
+
},
|
2566 |
+
{
|
2567 |
+
"epoch": 0.26,
|
2568 |
+
"learning_rate": 0.001853030303030303,
|
2569 |
+
"loss": 3.9251,
|
2570 |
+
"step": 4270
|
2571 |
+
},
|
2572 |
+
{
|
2573 |
+
"epoch": 0.26,
|
2574 |
+
"learning_rate": 0.0018515151515151515,
|
2575 |
+
"loss": 4.3514,
|
2576 |
+
"step": 4280
|
2577 |
+
},
|
2578 |
+
{
|
2579 |
+
"epoch": 0.26,
|
2580 |
+
"learning_rate": 0.00185,
|
2581 |
+
"loss": 4.2945,
|
2582 |
+
"step": 4290
|
2583 |
+
},
|
2584 |
+
{
|
2585 |
+
"epoch": 0.26,
|
2586 |
+
"learning_rate": 0.0018484848484848484,
|
2587 |
+
"loss": 4.1324,
|
2588 |
+
"step": 4300
|
2589 |
+
},
|
2590 |
+
{
|
2591 |
+
"epoch": 0.26,
|
2592 |
+
"learning_rate": 0.001846969696969697,
|
2593 |
+
"loss": 4.3477,
|
2594 |
+
"step": 4310
|
2595 |
+
},
|
2596 |
+
{
|
2597 |
+
"epoch": 0.26,
|
2598 |
+
"learning_rate": 0.0018454545454545455,
|
2599 |
+
"loss": 3.9568,
|
2600 |
+
"step": 4320
|
2601 |
+
},
|
2602 |
+
{
|
2603 |
+
"epoch": 0.26,
|
2604 |
+
"learning_rate": 0.0018439393939393939,
|
2605 |
+
"loss": 4.1842,
|
2606 |
+
"step": 4330
|
2607 |
+
},
|
2608 |
+
{
|
2609 |
+
"epoch": 0.26,
|
2610 |
+
"learning_rate": 0.0018424242424242424,
|
2611 |
+
"loss": 3.8381,
|
2612 |
+
"step": 4340
|
2613 |
+
},
|
2614 |
+
{
|
2615 |
+
"epoch": 0.27,
|
2616 |
+
"learning_rate": 0.001840909090909091,
|
2617 |
+
"loss": 3.9949,
|
2618 |
+
"step": 4350
|
2619 |
+
},
|
2620 |
+
{
|
2621 |
+
"epoch": 0.27,
|
2622 |
+
"learning_rate": 0.0018393939393939393,
|
2623 |
+
"loss": 3.9988,
|
2624 |
+
"step": 4360
|
2625 |
+
},
|
2626 |
+
{
|
2627 |
+
"epoch": 0.27,
|
2628 |
+
"learning_rate": 0.0018378787878787879,
|
2629 |
+
"loss": 3.8552,
|
2630 |
+
"step": 4370
|
2631 |
+
},
|
2632 |
+
{
|
2633 |
+
"epoch": 0.27,
|
2634 |
+
"learning_rate": 0.0018363636363636362,
|
2635 |
+
"loss": 4.0248,
|
2636 |
+
"step": 4380
|
2637 |
+
},
|
2638 |
+
{
|
2639 |
+
"epoch": 0.27,
|
2640 |
+
"learning_rate": 0.0018348484848484847,
|
2641 |
+
"loss": 4.0281,
|
2642 |
+
"step": 4390
|
2643 |
+
},
|
2644 |
+
{
|
2645 |
+
"epoch": 0.27,
|
2646 |
+
"learning_rate": 0.0018333333333333333,
|
2647 |
+
"loss": 3.7404,
|
2648 |
+
"step": 4400
|
2649 |
+
},
|
2650 |
+
{
|
2651 |
+
"epoch": 0.27,
|
2652 |
+
"learning_rate": 0.001831818181818182,
|
2653 |
+
"loss": 4.2635,
|
2654 |
+
"step": 4410
|
2655 |
+
},
|
2656 |
+
{
|
2657 |
+
"epoch": 0.27,
|
2658 |
+
"learning_rate": 0.0018303030303030304,
|
2659 |
+
"loss": 4.283,
|
2660 |
+
"step": 4420
|
2661 |
+
},
|
2662 |
+
{
|
2663 |
+
"epoch": 0.27,
|
2664 |
+
"learning_rate": 0.001828787878787879,
|
2665 |
+
"loss": 4.2484,
|
2666 |
+
"step": 4430
|
2667 |
+
},
|
2668 |
+
{
|
2669 |
+
"epoch": 0.27,
|
2670 |
+
"learning_rate": 0.0018272727272727275,
|
2671 |
+
"loss": 3.4916,
|
2672 |
+
"step": 4440
|
2673 |
+
},
|
2674 |
+
{
|
2675 |
+
"epoch": 0.27,
|
2676 |
+
"learning_rate": 0.0018257575757575758,
|
2677 |
+
"loss": 3.9377,
|
2678 |
+
"step": 4450
|
2679 |
+
},
|
2680 |
+
{
|
2681 |
+
"epoch": 0.27,
|
2682 |
+
"learning_rate": 0.0018242424242424244,
|
2683 |
+
"loss": 3.9158,
|
2684 |
+
"step": 4460
|
2685 |
+
},
|
2686 |
+
{
|
2687 |
+
"epoch": 0.27,
|
2688 |
+
"learning_rate": 0.0018227272727272727,
|
2689 |
+
"loss": 3.6584,
|
2690 |
+
"step": 4470
|
2691 |
+
},
|
2692 |
+
{
|
2693 |
+
"epoch": 0.27,
|
2694 |
+
"learning_rate": 0.0018212121212121213,
|
2695 |
+
"loss": 3.9092,
|
2696 |
+
"step": 4480
|
2697 |
+
},
|
2698 |
+
{
|
2699 |
+
"epoch": 0.27,
|
2700 |
+
"learning_rate": 0.0018196969696969698,
|
2701 |
+
"loss": 4.0258,
|
2702 |
+
"step": 4490
|
2703 |
+
},
|
2704 |
+
{
|
2705 |
+
"epoch": 0.27,
|
2706 |
+
"learning_rate": 0.0018181818181818182,
|
2707 |
+
"loss": 4.1592,
|
2708 |
+
"step": 4500
|
2709 |
+
},
|
2710 |
+
{
|
2711 |
+
"epoch": 0.28,
|
2712 |
+
"learning_rate": 0.0018166666666666667,
|
2713 |
+
"loss": 3.96,
|
2714 |
+
"step": 4510
|
2715 |
+
},
|
2716 |
+
{
|
2717 |
+
"epoch": 0.28,
|
2718 |
+
"learning_rate": 0.0018151515151515153,
|
2719 |
+
"loss": 4.0961,
|
2720 |
+
"step": 4520
|
2721 |
+
},
|
2722 |
+
{
|
2723 |
+
"epoch": 0.28,
|
2724 |
+
"learning_rate": 0.0018136363636363636,
|
2725 |
+
"loss": 4.3369,
|
2726 |
+
"step": 4530
|
2727 |
+
},
|
2728 |
+
{
|
2729 |
+
"epoch": 0.28,
|
2730 |
+
"learning_rate": 0.0018121212121212122,
|
2731 |
+
"loss": 4.26,
|
2732 |
+
"step": 4540
|
2733 |
+
},
|
2734 |
+
{
|
2735 |
+
"epoch": 0.28,
|
2736 |
+
"learning_rate": 0.0018106060606060607,
|
2737 |
+
"loss": 3.7775,
|
2738 |
+
"step": 4550
|
2739 |
+
},
|
2740 |
+
{
|
2741 |
+
"epoch": 0.28,
|
2742 |
+
"learning_rate": 0.001809090909090909,
|
2743 |
+
"loss": 4.2238,
|
2744 |
+
"step": 4560
|
2745 |
+
},
|
2746 |
+
{
|
2747 |
+
"epoch": 0.28,
|
2748 |
+
"learning_rate": 0.0018075757575757576,
|
2749 |
+
"loss": 4.024,
|
2750 |
+
"step": 4570
|
2751 |
+
},
|
2752 |
+
{
|
2753 |
+
"epoch": 0.28,
|
2754 |
+
"learning_rate": 0.0018060606060606062,
|
2755 |
+
"loss": 4.4203,
|
2756 |
+
"step": 4580
|
2757 |
+
},
|
2758 |
+
{
|
2759 |
+
"epoch": 0.28,
|
2760 |
+
"learning_rate": 0.0018045454545454545,
|
2761 |
+
"loss": 3.927,
|
2762 |
+
"step": 4590
|
2763 |
+
},
|
2764 |
+
{
|
2765 |
+
"epoch": 0.28,
|
2766 |
+
"learning_rate": 0.001803030303030303,
|
2767 |
+
"loss": 4.0777,
|
2768 |
+
"step": 4600
|
2769 |
+
},
|
2770 |
+
{
|
2771 |
+
"epoch": 0.28,
|
2772 |
+
"learning_rate": 0.0018015151515151514,
|
2773 |
+
"loss": 4.002,
|
2774 |
+
"step": 4610
|
2775 |
+
},
|
2776 |
+
{
|
2777 |
+
"epoch": 0.28,
|
2778 |
+
"learning_rate": 0.0018,
|
2779 |
+
"loss": 4.4143,
|
2780 |
+
"step": 4620
|
2781 |
+
},
|
2782 |
+
{
|
2783 |
+
"epoch": 0.28,
|
2784 |
+
"learning_rate": 0.0017984848484848485,
|
2785 |
+
"loss": 3.9836,
|
2786 |
+
"step": 4630
|
2787 |
+
},
|
2788 |
+
{
|
2789 |
+
"epoch": 0.28,
|
2790 |
+
"learning_rate": 0.0017969696969696968,
|
2791 |
+
"loss": 4.1457,
|
2792 |
+
"step": 4640
|
2793 |
+
},
|
2794 |
+
{
|
2795 |
+
"epoch": 0.28,
|
2796 |
+
"learning_rate": 0.0017954545454545454,
|
2797 |
+
"loss": 3.8955,
|
2798 |
+
"step": 4650
|
2799 |
+
},
|
2800 |
+
{
|
2801 |
+
"epoch": 0.28,
|
2802 |
+
"learning_rate": 0.001793939393939394,
|
2803 |
+
"loss": 4.282,
|
2804 |
+
"step": 4660
|
2805 |
+
},
|
2806 |
+
{
|
2807 |
+
"epoch": 0.28,
|
2808 |
+
"learning_rate": 0.0017924242424242423,
|
2809 |
+
"loss": 4.1152,
|
2810 |
+
"step": 4670
|
2811 |
+
},
|
2812 |
+
{
|
2813 |
+
"epoch": 0.29,
|
2814 |
+
"learning_rate": 0.0017909090909090908,
|
2815 |
+
"loss": 4.4537,
|
2816 |
+
"step": 4680
|
2817 |
+
},
|
2818 |
+
{
|
2819 |
+
"epoch": 0.29,
|
2820 |
+
"learning_rate": 0.0017893939393939394,
|
2821 |
+
"loss": 4.3918,
|
2822 |
+
"step": 4690
|
2823 |
+
},
|
2824 |
+
{
|
2825 |
+
"epoch": 0.29,
|
2826 |
+
"learning_rate": 0.001787878787878788,
|
2827 |
+
"loss": 3.9969,
|
2828 |
+
"step": 4700
|
2829 |
+
},
|
2830 |
+
{
|
2831 |
+
"epoch": 0.29,
|
2832 |
+
"learning_rate": 0.0017863636363636365,
|
2833 |
+
"loss": 4.4594,
|
2834 |
+
"step": 4710
|
2835 |
+
},
|
2836 |
+
{
|
2837 |
+
"epoch": 0.29,
|
2838 |
+
"learning_rate": 0.001784848484848485,
|
2839 |
+
"loss": 3.8802,
|
2840 |
+
"step": 4720
|
2841 |
+
},
|
2842 |
+
{
|
2843 |
+
"epoch": 0.29,
|
2844 |
+
"learning_rate": 0.0017833333333333334,
|
2845 |
+
"loss": 4.3977,
|
2846 |
+
"step": 4730
|
2847 |
+
},
|
2848 |
+
{
|
2849 |
+
"epoch": 0.29,
|
2850 |
+
"learning_rate": 0.001781818181818182,
|
2851 |
+
"loss": 3.9135,
|
2852 |
+
"step": 4740
|
2853 |
+
},
|
2854 |
+
{
|
2855 |
+
"epoch": 0.29,
|
2856 |
+
"learning_rate": 0.0017803030303030305,
|
2857 |
+
"loss": 4.2225,
|
2858 |
+
"step": 4750
|
2859 |
+
},
|
2860 |
+
{
|
2861 |
+
"epoch": 0.29,
|
2862 |
+
"learning_rate": 0.0017787878787878788,
|
2863 |
+
"loss": 4.1572,
|
2864 |
+
"step": 4760
|
2865 |
+
},
|
2866 |
+
{
|
2867 |
+
"epoch": 0.29,
|
2868 |
+
"learning_rate": 0.0017772727272727274,
|
2869 |
+
"loss": 3.9195,
|
2870 |
+
"step": 4770
|
2871 |
+
},
|
2872 |
+
{
|
2873 |
+
"epoch": 0.29,
|
2874 |
+
"learning_rate": 0.001775757575757576,
|
2875 |
+
"loss": 4.1182,
|
2876 |
+
"step": 4780
|
2877 |
+
},
|
2878 |
+
{
|
2879 |
+
"epoch": 0.29,
|
2880 |
+
"learning_rate": 0.0017742424242424243,
|
2881 |
+
"loss": 4.0127,
|
2882 |
+
"step": 4790
|
2883 |
+
},
|
2884 |
+
{
|
2885 |
+
"epoch": 0.29,
|
2886 |
+
"learning_rate": 0.0017727272727272728,
|
2887 |
+
"loss": 3.725,
|
2888 |
+
"step": 4800
|
2889 |
+
},
|
2890 |
+
{
|
2891 |
+
"epoch": 0.29,
|
2892 |
+
"learning_rate": 0.0017712121212121214,
|
2893 |
+
"loss": 3.9258,
|
2894 |
+
"step": 4810
|
2895 |
+
},
|
2896 |
+
{
|
2897 |
+
"epoch": 0.29,
|
2898 |
+
"learning_rate": 0.0017696969696969697,
|
2899 |
+
"loss": 3.6133,
|
2900 |
+
"step": 4820
|
2901 |
+
},
|
2902 |
+
{
|
2903 |
+
"epoch": 0.29,
|
2904 |
+
"learning_rate": 0.0017681818181818183,
|
2905 |
+
"loss": 3.6561,
|
2906 |
+
"step": 4830
|
2907 |
+
},
|
2908 |
+
{
|
2909 |
+
"epoch": 0.3,
|
2910 |
+
"learning_rate": 0.0017666666666666666,
|
2911 |
+
"loss": 3.9838,
|
2912 |
+
"step": 4840
|
2913 |
+
},
|
2914 |
+
{
|
2915 |
+
"epoch": 0.3,
|
2916 |
+
"learning_rate": 0.0017651515151515152,
|
2917 |
+
"loss": 4.0107,
|
2918 |
+
"step": 4850
|
2919 |
+
},
|
2920 |
+
{
|
2921 |
+
"epoch": 0.3,
|
2922 |
+
"learning_rate": 0.0017636363636363637,
|
2923 |
+
"loss": 4.1814,
|
2924 |
+
"step": 4860
|
2925 |
+
},
|
2926 |
+
{
|
2927 |
+
"epoch": 0.3,
|
2928 |
+
"learning_rate": 0.001762121212121212,
|
2929 |
+
"loss": 4.0902,
|
2930 |
+
"step": 4870
|
2931 |
+
},
|
2932 |
+
{
|
2933 |
+
"epoch": 0.3,
|
2934 |
+
"learning_rate": 0.0017606060606060606,
|
2935 |
+
"loss": 4.418,
|
2936 |
+
"step": 4880
|
2937 |
+
},
|
2938 |
+
{
|
2939 |
+
"epoch": 0.3,
|
2940 |
+
"learning_rate": 0.0017590909090909092,
|
2941 |
+
"loss": 4.008,
|
2942 |
+
"step": 4890
|
2943 |
+
},
|
2944 |
+
{
|
2945 |
+
"epoch": 0.3,
|
2946 |
+
"learning_rate": 0.0017575757575757575,
|
2947 |
+
"loss": 4.2344,
|
2948 |
+
"step": 4900
|
2949 |
+
},
|
2950 |
+
{
|
2951 |
+
"epoch": 0.3,
|
2952 |
+
"learning_rate": 0.001756060606060606,
|
2953 |
+
"loss": 3.9775,
|
2954 |
+
"step": 4910
|
2955 |
+
},
|
2956 |
+
{
|
2957 |
+
"epoch": 0.3,
|
2958 |
+
"learning_rate": 0.0017545454545454546,
|
2959 |
+
"loss": 4.8027,
|
2960 |
+
"step": 4920
|
2961 |
+
},
|
2962 |
+
{
|
2963 |
+
"epoch": 0.3,
|
2964 |
+
"learning_rate": 0.001753030303030303,
|
2965 |
+
"loss": 4.2629,
|
2966 |
+
"step": 4930
|
2967 |
+
},
|
2968 |
+
{
|
2969 |
+
"epoch": 0.3,
|
2970 |
+
"learning_rate": 0.0017515151515151515,
|
2971 |
+
"loss": 4.198,
|
2972 |
+
"step": 4940
|
2973 |
+
},
|
2974 |
+
{
|
2975 |
+
"epoch": 0.3,
|
2976 |
+
"learning_rate": 0.0017499999999999998,
|
2977 |
+
"loss": 4.0887,
|
2978 |
+
"step": 4950
|
2979 |
+
},
|
2980 |
+
{
|
2981 |
+
"epoch": 0.3,
|
2982 |
+
"learning_rate": 0.0017484848484848484,
|
2983 |
+
"loss": 4.1445,
|
2984 |
+
"step": 4960
|
2985 |
+
},
|
2986 |
+
{
|
2987 |
+
"epoch": 0.3,
|
2988 |
+
"learning_rate": 0.001746969696969697,
|
2989 |
+
"loss": 3.9627,
|
2990 |
+
"step": 4970
|
2991 |
+
},
|
2992 |
+
{
|
2993 |
+
"epoch": 0.3,
|
2994 |
+
"learning_rate": 0.0017454545454545457,
|
2995 |
+
"loss": 4.4545,
|
2996 |
+
"step": 4980
|
2997 |
+
},
|
2998 |
+
{
|
2999 |
+
"epoch": 0.3,
|
3000 |
+
"learning_rate": 0.001743939393939394,
|
3001 |
+
"loss": 4.0764,
|
3002 |
+
"step": 4990
|
3003 |
+
},
|
3004 |
+
{
|
3005 |
+
"epoch": 0.31,
|
3006 |
+
"learning_rate": 0.0017424242424242426,
|
3007 |
+
"loss": 4.1914,
|
3008 |
+
"step": 5000
|
3009 |
+
}
|
3010 |
+
],
|
3011 |
+
"max_steps": 16500,
|
3012 |
+
"num_train_epochs": 2,
|
3013 |
+
"total_flos": 1.7332860616704e+17,
|
3014 |
+
"trial_name": null,
|
3015 |
+
"trial_params": null
|
3016 |
+
}
|
xiaowo/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bab6fefeccf33ecae53947b1c444bd9a1f0f1f040993b12582eba666e374911
|
3 |
+
size 3771
|