Spaces:
Runtime error
Runtime error
from PIL import Image | |
from io import BytesIO | |
import base64 | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
from diffusers.utils import load_image | |
import torch | |
import gradio as gr | |
controlnet = ControlNetModel.from_pretrained("rgres/sd-controlnet-aerialdreams", torch_dtype=torch.float16) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1-base", controlnet=controlnet, torch_dtype=torch.float16 | |
) | |
pipe = pipe.to("cuda") | |
# CPU offloading for faster inference times | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_model_cpu_offload() | |
def generate_map(image, prompt, steps, seed): | |
#image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
generator = torch.manual_seed(seed) | |
image = Image.fromarray(image) | |
image = pipe( | |
prompt=prompt, | |
num_inference_steps=steps, | |
image=image | |
).images[0] | |
return image | |
demo = gr.Interface( | |
fn=generate_map, | |
server_port=os.getenv('GRADIO_PORT', '7860'), | |
inputs=["image", "text", gr.Slider(0,100), "number"], | |
outputs="image") | |
demo.launch() | |