Spaces:
Sleeping
Sleeping
adding demo
Browse files- app.py +211 -0
- image_examples/RV.jpeg +0 -0
- image_examples/__init__.py +0 -0
- image_examples/biker.jpeg +0 -0
- image_examples/dog.jpeg +0 -0
- image_examples/fish.jpeg +0 -0
- image_examples/mower.jpeg +0 -0
- modelguidedattacks/cls_models/registry.py +51 -0
- modelguidedattacks/guides/unguided.py +4 -0
- quadattack_pipeline.pdf +0 -0
- testing.md +1 -0
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import types
|
3 |
+
import timm
|
4 |
+
import requests
|
5 |
+
import random
|
6 |
+
import yaml
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image
|
9 |
+
from timm import create_model
|
10 |
+
from torchvision import transforms
|
11 |
+
from timm.data import resolve_data_config
|
12 |
+
from modelguidedattacks.guides.unguided import Unguided
|
13 |
+
from timm.data.transforms_factory import create_transform
|
14 |
+
from modelguidedattacks.cls_models.registry import TimmPretrainModelWrapper
|
15 |
+
|
16 |
+
|
17 |
+
# Download human-readable labels for ImageNet.
|
18 |
+
IMAGENET_LABELS_URL = "https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt"
|
19 |
+
LABELS = requests.get(IMAGENET_LABELS_URL).text.strip().split("\n")
|
20 |
+
SORTED_LABELS = sorted(LABELS.copy(), key=lambda s: s.lower())
|
21 |
+
|
22 |
+
def get_timm_model(name):
|
23 |
+
"""Retrieves model from timm library by name with weights loaded.
|
24 |
+
"""
|
25 |
+
model = create_model(name,pretrained="true")
|
26 |
+
transform = create_transform(**resolve_data_config({}, model=model))
|
27 |
+
model = model.eval()
|
28 |
+
return model, transform
|
29 |
+
|
30 |
+
def create_attacker(model, transform, iterations):
|
31 |
+
""" Instantiates an QuadAttack Model.
|
32 |
+
"""
|
33 |
+
# config_dict = {"cvx_proj_margin" : 0.2,
|
34 |
+
# "opt_warmup_its": 5}
|
35 |
+
with open("base_config.yaml") as f:
|
36 |
+
config_dict = yaml.safe_load(f)
|
37 |
+
|
38 |
+
config = types.SimpleNamespace(**config_dict)
|
39 |
+
|
40 |
+
attacker = Unguided(TimmPretrainModelWrapper(model, transform,"", "", ""), config, iterations=iterations,
|
41 |
+
lr=0.002, topk_loss_coef_upper=10)
|
42 |
+
|
43 |
+
return attacker
|
44 |
+
|
45 |
+
def predict_topk_accuracies(img, k, iters, model_name, desired_labels, button=None, progress=gr.Progress(track_tqdm=True)):
|
46 |
+
""" Predict the top K results using base model and attacker model.
|
47 |
+
"""
|
48 |
+
label_inds = list(range(0,1000)) #label indices
|
49 |
+
# convert user desired labels to desired inds
|
50 |
+
desired_inds = [LABELS.index(name) for name in desired_labels]
|
51 |
+
# remove selected before randomly sampling the rest
|
52 |
+
for ind in desired_inds:
|
53 |
+
label_inds.remove(ind)
|
54 |
+
|
55 |
+
# fill up user selections to top k results
|
56 |
+
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds))
|
57 |
+
tensorized_desired_inds = torch.tensor(desired_inds).unsqueeze(0) #[B,K]
|
58 |
+
|
59 |
+
model, transform = get_timm_model(model_name)
|
60 |
+
|
61 |
+
# Define a transformation to convert PIL image to a tensor
|
62 |
+
normalization = transforms.Compose([
|
63 |
+
transform.transforms[-1] # Converts to a PyTorch tensor
|
64 |
+
])
|
65 |
+
preprocess = transforms.Compose(
|
66 |
+
transform.transforms[:-1] # Converts to a PyTorch tensor
|
67 |
+
)
|
68 |
+
|
69 |
+
attacker = create_attacker(model, normalization, iters)
|
70 |
+
|
71 |
+
|
72 |
+
img = img.convert('RGB')
|
73 |
+
orig_img = img.copy()
|
74 |
+
orig_img = preprocess(orig_img)
|
75 |
+
orig_img = orig_img.unsqueeze(0)
|
76 |
+
img = transform(img).unsqueeze(0)
|
77 |
+
|
78 |
+
with torch.no_grad():
|
79 |
+
outputs = model(img)
|
80 |
+
attack_outputs, attack_img = attacker(orig_img, tensorized_desired_inds, None)
|
81 |
+
|
82 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
83 |
+
attacker_probs = torch.nn.functional.softmax(attack_outputs[0], dim=0)
|
84 |
+
|
85 |
+
values, indices = torch.topk(probabilities, k)
|
86 |
+
|
87 |
+
attack_vals, attack_inds = torch.topk(attacker_probs, k)
|
88 |
+
|
89 |
+
attack_img_out = orig_img + attack_img #B C H W
|
90 |
+
# Convert the PyTorch tensor to a NumPy array
|
91 |
+
attack_img_out = attack_img_out.squeeze(0) # C H W
|
92 |
+
attack_img_out = attack_img_out.permute(1, 2, 0).numpy() # H W C
|
93 |
+
|
94 |
+
orig_img = orig_img.squeeze(0)
|
95 |
+
orig_img = orig_img.permute(1, 2, 0).numpy()
|
96 |
+
|
97 |
+
attack_img = attack_img.squeeze(0)
|
98 |
+
attack_img = attack_img.permute(1, 2, 0).numpy()
|
99 |
+
|
100 |
+
|
101 |
+
# Convert the NumPy array to a PIL image
|
102 |
+
attack_img_out = Image.fromarray((attack_img_out * 255).astype('uint8'))
|
103 |
+
orig_img = Image.fromarray((orig_img * 255).astype('uint8'))
|
104 |
+
attack_img = Image.fromarray((attack_img * 255).astype('uint8'))
|
105 |
+
|
106 |
+
|
107 |
+
return (orig_img, attack_img_out, attack_img,{LABELS[i]: v.item() for i, v in zip(indices, values)}, {LABELS[i]: v.item() for i, v in zip(attack_inds, attack_vals)})
|
108 |
+
|
109 |
+
def random_fill_classes(desired_labels, k):
|
110 |
+
|
111 |
+
label_inds = list(range(0,1000)) #label indices
|
112 |
+
# convert user desired labels to desired inds
|
113 |
+
if len(desired_labels) > k:
|
114 |
+
desired_labels = desired_labels[:k]
|
115 |
+
desired_inds = [LABELS.index(name) for name in desired_labels]
|
116 |
+
# remove selected before randomly sampling the rest
|
117 |
+
for ind in desired_inds:
|
118 |
+
label_inds.remove(ind)
|
119 |
+
|
120 |
+
# fill up user selections to top k results
|
121 |
+
desired_inds = desired_inds + random.sample(label_inds,k-len(desired_inds))
|
122 |
+
|
123 |
+
return [LABELS[ind] for ind in desired_inds]
|
124 |
+
|
125 |
+
|
126 |
+
input_img = gr.Image(type='pil')
|
127 |
+
top_k_slider = gr.Slider(2, 20, value=10, step=1, label="Top K predictions", info="Choose between 2 and 20")
|
128 |
+
iteration_slider = gr.Slider(30, 1000, value=60, step=1, label="QuadAttack Iterations", info="Choose how many iterations to optimize using QuadAttack! (Usually <= 60 is enough)")
|
129 |
+
model_choice_list = gr.Dropdown(
|
130 |
+
timm.list_models(), value="vit_base_patch16_224", label="timm model name", info="Currently only supporting timm models! See code for models used in paper."
|
131 |
+
)
|
132 |
+
desired_labels = gr.Dropdown(
|
133 |
+
SORTED_LABELS, max_choices=20,filterable=True, multiselect=True, label="Desired Labels for QuadAttack", info="Select classes you wish to output from an attack. \
|
134 |
+
Classes will be ranked in order listed and randomly filled up to \
|
135 |
+
K if < K options are selected."
|
136 |
+
)
|
137 |
+
button = gr.Button("Randomly fill Top-K attack classes.")
|
138 |
+
|
139 |
+
desc = r'<div align="center">Authors: Thomas Paniagua, Ryan Grainger, Tianfu Wu <p><a href="https://arxiv.org/abs/2312.11510">Paper</a><br><a href="https://github.com/thomaspaniagua/quadattack">Code</a></p> </div>'
|
140 |
+
with gr.Interface(predict_topk_accuracies,
|
141 |
+
inputs=[input_img,
|
142 |
+
top_k_slider,
|
143 |
+
iteration_slider,
|
144 |
+
model_choice_list,
|
145 |
+
desired_labels,
|
146 |
+
button],
|
147 |
+
outputs=[
|
148 |
+
gr.Image(type='pil', label="Input Image"),
|
149 |
+
gr.Image(type='pil', label="Perturbed Image"),
|
150 |
+
gr.Image(type='pil', label="Added Noise"),
|
151 |
+
gr.Label(label="Original Top K"),
|
152 |
+
gr.Label(label="QuadAttack Top K"),
|
153 |
+
# gr.Image(type='pil', label="Perturbed Image")
|
154 |
+
],
|
155 |
+
title='QuadAttack!',
|
156 |
+
description= desc,
|
157 |
+
cache_examples=False,
|
158 |
+
allow_flagging="never",
|
159 |
+
thumbnail= "quadattack_pipeline.pdf",
|
160 |
+
examples = [["image_examples/RV.jpeg", 5, 30, "vit_base_patch16_224", None, None
|
161 |
+
# ["lemon", "plastic_bag", "hay", "tripod", "bell_cote, bell_cot"]
|
162 |
+
],
|
163 |
+
# ["image_examples/biker.jpeg", 10, 60, "swinv2_cr_base_224", None, None
|
164 |
+
|
165 |
+
# ["hog, pig, grunter, squealer, Sus_scrofa",
|
166 |
+
# "lesser_panda, red_panda, panda, bear_cat, cat_bear, Ailurus_fulgens",
|
167 |
+
# "caldron, cauldron", "dowitcher", "water_tower", "quill, quill_pen",
|
168 |
+
# "balance_beam, beam", "unicycle, monocycle", "pencil_sharpener",
|
169 |
+
# "puffer, pufferfish, blowfish, globefish"
|
170 |
+
# ]
|
171 |
+
# ],
|
172 |
+
["image_examples/mower.jpeg", 15, 100,"wide_resnet101_2", None , None
|
173 |
+
|
174 |
+
# ["washbasin, handbasin, washbowl, lavabo, wash-hand_basin",
|
175 |
+
# "cucumber, cuke", "bolete", "oboe, hautboy, hautboi", "crane",
|
176 |
+
# "wolf_spider, hunting_spider", "Norfolk_terrier", "nail", "sidewinder, horned_rattlesnake, Crotalus_cerastes",
|
177 |
+
# "cannon", "beaker", "Shetland_sheepdog, Shetland_sheep_dog, Shetland",
|
178 |
+
# "monitor", "restaurant, eating_house, eating_place, eatery", "electric_fan, blower"
|
179 |
+
# ]
|
180 |
+
],
|
181 |
+
# ["image_examples/dog.jpeg", 20, 150, "xcit_small_12_p8_224", None, None
|
182 |
+
|
183 |
+
# ["church, church_building", "axolotl, mud_puppy, Ambystoma_mexicanum",
|
184 |
+
# "Scotch_terrier, Scottish_terrier, Scottie", "black-footed_ferret, ferret, Mustela_nigripes",
|
185 |
+
# "lab_coat, laboratory_coat", "gyromitra", "grasshopper, hopper", "snail", "tabby, tabby_cat",
|
186 |
+
# "bell_cote, bell_cot", "Indian_cobra, Naja_naja", "robin, American_robin, Turdus_migratorius",
|
187 |
+
# "tiger_cat", "book_jacket, dust_cover, dust_jacket, dust_wrapper", "loudspeaker, speaker, speaker_unit, loudspeaker_system, speaker_system",
|
188 |
+
# "washbasin, handbasin, washbowl, lavabo, wash-hand_basin", "electric_guitar", "armadillo", "ski_mask",
|
189 |
+
# "convertible"
|
190 |
+
# ]
|
191 |
+
|
192 |
+
# ],
|
193 |
+
["image_examples/fish.jpeg", 10, 100, "pvt_v2_b0", None, None
|
194 |
+
|
195 |
+
# ["ground_beetle, carabid_beetle", "sunscreen, sunblock, sun_blocker", "brass, memorial_tablet, plaque", "Irish_terrier", "head_cabbage", "bathtub, bathing_tub, bath, tub",
|
196 |
+
# "centipede", "squirrel_monkey, Saimiri_sciureus", "Chihuahua", "hourglass"
|
197 |
+
# ]
|
198 |
+
]
|
199 |
+
]
|
200 |
+
|
201 |
+
).queue() as app:
|
202 |
+
#turn off clear button as it erases globals
|
203 |
+
for block in app.blocks:
|
204 |
+
if isinstance(app.blocks[block],gr.Button):
|
205 |
+
if app.blocks[block].value == "Clear":
|
206 |
+
app.blocks[block].visible=False
|
207 |
+
button.click(random_fill_classes, inputs=[desired_labels,top_k_slider], outputs=desired_labels)
|
208 |
+
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
app.launch(server_port=9000)
|
image_examples/RV.jpeg
ADDED
image_examples/__init__.py
ADDED
File without changes
|
image_examples/biker.jpeg
ADDED
image_examples/dog.jpeg
ADDED
image_examples/fish.jpeg
ADDED
image_examples/mower.jpeg
ADDED
modelguidedattacks/cls_models/registry.py
CHANGED
@@ -31,6 +31,57 @@ class ClsModel(nn.Module):
|
|
31 |
|
32 |
raise NotImplementedError("Forward not implemented for base class")
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
class MMPretrainModelWrapper(ClsModel):
|
35 |
"""
|
36 |
Calls data preprocessing for model before entering forward
|
|
|
31 |
|
32 |
raise NotImplementedError("Forward not implemented for base class")
|
33 |
|
34 |
+
class TimmPretrainModelWrapper(ClsModel):
|
35 |
+
"""
|
36 |
+
Calls data preprocessing for model before entering forward
|
37 |
+
"""
|
38 |
+
def __init__(self, model: nn.Module, transform, dataset_name: str, model_name: str, device: str) -> None:
|
39 |
+
super().__init__(dataset_name, model_name, device)
|
40 |
+
self.model = model
|
41 |
+
self.transform = transform
|
42 |
+
|
43 |
+
@property
|
44 |
+
def final_linear_layer(self):
|
45 |
+
try:
|
46 |
+
testing_head = self.model.head
|
47 |
+
head = True
|
48 |
+
except:
|
49 |
+
head = False
|
50 |
+
|
51 |
+
if head:
|
52 |
+
if isinstance(self.model.head, torch.nn.Linear):
|
53 |
+
return self.model.head
|
54 |
+
else:
|
55 |
+
return self.model.head.fc
|
56 |
+
else:
|
57 |
+
return self.model.fc
|
58 |
+
|
59 |
+
def head_features(self):
|
60 |
+
return self.final_linear_layer.in_features
|
61 |
+
|
62 |
+
def num_classes(self):
|
63 |
+
return self.final_linear_layer.out_features
|
64 |
+
|
65 |
+
def head(self, feats):
|
66 |
+
return self.model.head((feats,))
|
67 |
+
|
68 |
+
def head_matrices(self):
|
69 |
+
return self.final_linear_layer.weight, self.final_linear_layer.bias
|
70 |
+
|
71 |
+
def forward(self, x, return_features=False):
|
72 |
+
x = self.transform(x)
|
73 |
+
if return_features:
|
74 |
+
feats = self.model.forward_features(x)
|
75 |
+
logits = self.model.forward_head(feats, pre_logits=True)
|
76 |
+
try:
|
77 |
+
preds = self.model.fc(logits) # convnet,
|
78 |
+
except:
|
79 |
+
preds = self.model.head(logits) # vit
|
80 |
+
|
81 |
+
return preds, logits
|
82 |
+
else:
|
83 |
+
return self.model(x)
|
84 |
+
|
85 |
class MMPretrainModelWrapper(ClsModel):
|
86 |
"""
|
87 |
Calls data preprocessing for model before entering forward
|
modelguidedattacks/guides/unguided.py
CHANGED
@@ -63,6 +63,10 @@ class Unguided(nn.Module):
|
|
63 |
|
64 |
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
65 |
device=x.device)*2e-3)
|
|
|
|
|
|
|
|
|
66 |
|
67 |
with torch.no_grad():
|
68 |
prediction_logits_0, prediction_feats_0 \
|
|
|
63 |
|
64 |
x_perturbation = nn.Parameter(torch.randn(x.shape,
|
65 |
device=x.device)*2e-3)
|
66 |
+
|
67 |
+
optimizer = self.optimizer([x_perturbation], lr=self.lr)
|
68 |
+
|
69 |
+
precomputed_state = self.loss.precompute(attack_targets, gt_labels, self.config)
|
70 |
|
71 |
with torch.no_grad():
|
72 |
prediction_logits_0, prediction_feats_0 \
|
quadattack_pipeline.pdf
ADDED
Binary file (111 kB). View file
|
|
testing.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
<\center> #QuadAttack
|