Spaces:
Running
on
Zero
Running
on
Zero
| # Importing Libraries | |
| import numpy as np | |
| from PIL import Image | |
| import torch | |
| from torchvision import transforms | |
| from torchinfo import summary | |
| import os,sys,warnings | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| warnings.filterwarnings("ignore") | |
| import argparse | |
| import functions.tres_functions as tres_functions | |
| import defaults | |
| class Compute_TReS(torch.nn.Module): | |
| def __init__(self, | |
| model_path:str, | |
| device:str | |
| ): | |
| """ | |
| Args: | |
| model_path (str): Path to weights of TReS model. | |
| device (str): Device used while computing features. | |
| """ | |
| super().__init__() | |
| # Device | |
| if device is None: | |
| self.device = "cuda" if torch.cuda.is_available() else "cpu" | |
| else: | |
| self.device = device | |
| # Load TReS Model | |
| config = argparse.Namespace() | |
| config.network = 'resnet50' | |
| config.nheadt = 16 | |
| config.num_encoder_layerst = 2 | |
| config.dim_feedforwardt = 64 | |
| self.model = tres_functions.Net(config, self.device).to(self.device) | |
| self.model.load_state_dict(torch.load(model_path)) | |
| self.model.eval() | |
| for param in self.model.parameters(): | |
| param.requires_grad = False | |
| def forward(self, img): | |
| _, feat_batch = self.model(img) | |
| return feat_batch | |
| # Calling Main function | |
| if __name__ == '__main__': | |
| F = Compute_TReS(model_path=os.path.join(defaults.main_feature_ckpts_dir, "feature_extractor_checkpoints/tres_model/bestmodel_1_2021.zip"), device="cuda:0") | |
| O = F.forward(torch.randn(1,3,224,224).cuda()) | |
| print (O.shape) |