krishnasrikard
Codes
2cda712
# Importing Libraries
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from torchinfo import summary
import os,sys,warnings
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
warnings.filterwarnings("ignore")
import argparse
import functions.tres_functions as tres_functions
import defaults
class Compute_TReS(torch.nn.Module):
def __init__(self,
model_path:str,
device:str
):
"""
Args:
model_path (str): Path to weights of TReS model.
device (str): Device used while computing features.
"""
super().__init__()
# Device
if device is None:
self.device = "cuda" if torch.cuda.is_available() else "cpu"
else:
self.device = device
# Load TReS Model
config = argparse.Namespace()
config.network = 'resnet50'
config.nheadt = 16
config.num_encoder_layerst = 2
config.dim_feedforwardt = 64
self.model = tres_functions.Net(config, self.device).to(self.device)
self.model.load_state_dict(torch.load(model_path))
self.model.eval()
for param in self.model.parameters():
param.requires_grad = False
def forward(self, img):
_, feat_batch = self.model(img)
return feat_batch
# Calling Main function
if __name__ == '__main__':
F = Compute_TReS(model_path=os.path.join(defaults.main_feature_ckpts_dir, "feature_extractor_checkpoints/tres_model/bestmodel_1_2021.zip"), device="cuda:0")
O = F.forward(torch.randn(1,3,224,224).cuda())
print (O.shape)