Spaces:
Runtime error
Runtime error
[UPDATE, DOCS] update app.py
Browse files- add emoji to prediction results
- update space name
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🌦️
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
|
|
1 |
---
|
2 |
+
title: climate-plus demo
|
3 |
emoji: 🌦️
|
4 |
colorFrom: yellow
|
5 |
colorTo: blue
|
app.py
CHANGED
@@ -71,7 +71,12 @@ def tcfd_classify(text):
|
|
71 |
|
72 |
|
73 |
data1 = {
|
74 |
-
"example": [
|
|
|
|
|
|
|
|
|
|
|
75 |
"claim": [
|
76 |
"Sea ice has diminished much faster than scientists and climate models anticipated.",
|
77 |
"Climate Models Have Overestimated Global Warming",
|
@@ -88,7 +93,12 @@ data1 = {
|
|
88 |
}
|
89 |
|
90 |
data2 = {
|
91 |
-
"example": [
|
|
|
|
|
|
|
|
|
|
|
92 |
"text": [
|
93 |
"As a global provider of transport and logistics services, we are often called on for expert input and industry insights by government representatives.",
|
94 |
"There are no sentences in the provided excerpts that disclose Scope 1 and Scope 2, and, if appropriate Scope 3 GHG emissions. The provided excerpts focus on other metrics and targets related to social impact investing, assets under management, and carbon footprint calculations.",
|
@@ -103,9 +113,27 @@ data2 = {
|
|
103 |
],
|
104 |
}
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
df1 = pd.DataFrame(data1)
|
107 |
df2 = pd.DataFrame(data2)
|
108 |
|
|
|
|
|
109 |
|
110 |
st.markdown("## Factchecking")
|
111 |
|
@@ -114,20 +142,32 @@ ex1_selected = st.selectbox(
|
|
114 |
)
|
115 |
selected_row1 = df1[df1["example"] == ex1_selected]
|
116 |
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
121 |
st.markdown(
|
122 |
-
f'**Prediction**: {
|
123 |
)
|
124 |
|
|
|
|
|
125 |
st.markdown("## TCFD disclosure classification")
|
126 |
|
127 |
ex2_selected = st.selectbox("Select a TCFD disclosure example", df2["example"])
|
128 |
selected_row2 = df2[df2["example"] == ex2_selected]
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
|
73 |
data1 = {
|
74 |
+
"example": [
|
75 |
+
"Example 1 (Sea ice has diminished much faster than scientists and climate models anticipated.)",
|
76 |
+
"Example 2 (Climate Models Have Overestimated Global Warming)",
|
77 |
+
"Example 3 (Climate skeptics argue temperature records have been adjusted in recent years to ...)",
|
78 |
+
"Example 4 (Humans are too insignificant to affect global climate.)",
|
79 |
+
],
|
80 |
"claim": [
|
81 |
"Sea ice has diminished much faster than scientists and climate models anticipated.",
|
82 |
"Climate Models Have Overestimated Global Warming",
|
|
|
93 |
}
|
94 |
|
95 |
data2 = {
|
96 |
+
"example": [
|
97 |
+
"Example 1 (As a global provider of transport and logistics services ...)",
|
98 |
+
"Example 2 (There are no sentences in the provided excerpts that disclose Scope 1 and Scope 2)",
|
99 |
+
"Example 3 (Our strategy needs to be resilient under a range of climate-related scenarios.)",
|
100 |
+
"Example 4 (AXA created a Group-level Responsible Investment Committee ...)",
|
101 |
+
],
|
102 |
"text": [
|
103 |
"As a global provider of transport and logistics services, we are often called on for expert input and industry insights by government representatives.",
|
104 |
"There are no sentences in the provided excerpts that disclose Scope 1 and Scope 2, and, if appropriate Scope 3 GHG emissions. The provided excerpts focus on other metrics and targets related to social impact investing, assets under management, and carbon footprint calculations.",
|
|
|
113 |
],
|
114 |
}
|
115 |
|
116 |
+
|
117 |
+
def get_pred_emoji(str1, str2, mode="factcheck"):
|
118 |
+
if mode == "factcheck":
|
119 |
+
if str1 == str2:
|
120 |
+
return "✅"
|
121 |
+
else:
|
122 |
+
return "❌"
|
123 |
+
elif mode == "tcfd":
|
124 |
+
if str1 == str2:
|
125 |
+
return "✅"
|
126 |
+
elif str1.split()[:-1] == str2.split()[:-1]:
|
127 |
+
return "🔧"
|
128 |
+
else:
|
129 |
+
return "❌"
|
130 |
+
|
131 |
+
|
132 |
df1 = pd.DataFrame(data1)
|
133 |
df2 = pd.DataFrame(data2)
|
134 |
|
135 |
+
st.markdown("# climate-plus demo")
|
136 |
+
st.markdown("This is a minimal example of two models we trained for `climate-plus` project. See the [GitHub repo](https://github.com/rexarski/climate-plus) for more details.")
|
137 |
|
138 |
st.markdown("## Factchecking")
|
139 |
|
|
|
142 |
)
|
143 |
selected_row1 = df1[df1["example"] == ex1_selected]
|
144 |
|
145 |
+
ex_claim = selected_row1["claim"].values[0]
|
146 |
+
ex_evidence = selected_row1["evidence"].values[0]
|
147 |
+
ex_label = selected_row1["label"].values[0]
|
148 |
+
ex_pred = factcheck(
|
149 |
+
selected_row1["claim"].values[0], selected_row1["evidence"].values[0]
|
150 |
+
)
|
151 |
+
st.markdown(f"**Claim**: {ex_claim}")
|
152 |
+
st.markdown(f"**Evidence**: {ex_evidence}")
|
153 |
+
st.markdown(f"**Label**: {ex_label}")
|
154 |
st.markdown(
|
155 |
+
f'**Prediction**: {ex_pred} {get_pred_emoji(ex_label, ex_pred, mode="factcheck")}'
|
156 |
)
|
157 |
|
158 |
+
st.markdown("---")
|
159 |
+
|
160 |
st.markdown("## TCFD disclosure classification")
|
161 |
|
162 |
ex2_selected = st.selectbox("Select a TCFD disclosure example", df2["example"])
|
163 |
selected_row2 = df2[df2["example"] == ex2_selected]
|
164 |
|
165 |
+
ex_text = selected_row2["text"].values[0]
|
166 |
+
ex_label2 = selected_row2["label"].values[0]
|
167 |
+
ex_pred2 = tcfd_classify(selected_row2["text"].values[0])
|
168 |
+
|
169 |
+
st.markdown(f"**Text**: {ex_text}")
|
170 |
+
st.markdown(f"**Label**: {ex_label2}")
|
171 |
+
st.markdown(
|
172 |
+
f'**Prediction**: {ex_pred2} {get_pred_emoji(ex_label2, ex_pred2, mode="tcfd")}'
|
173 |
+
)
|