ReWOO-Demo / nodes /Worker.py
billxbf's picture
init
926675f
raw
history blame
9.57 kB
import requests
from geopy.geocoders import Nominatim
from langchain import OpenAI, LLMMathChain, LLMChain, PromptTemplate, Wikipedia
from langchain.agents import Tool
from langchain.agents.react.base import DocstoreExplorer
from langchain.document_loaders import TextLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.utilities import SerpAPIWrapper
from langchain.utilities.wolfram_alpha import WolframAlphaAPIWrapper
from nodes.Node import Node
class GoogleWorker(Node):
def __init__(self, name="Google"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that searches results from Google. Useful when you need to find short " \
"and succinct answers about a specific topic. Input should be a search query."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
tool = SerpAPIWrapper()
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class WikipediaWorker(Node):
def __init__(self, name="Wikipedia", docstore=None):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that search for similar page contents from Wikipedia. Useful when you need to " \
"get holistic knowledge about people, places, companies, historical events, " \
"or other subjects. The response are long and might contain some irrelevant information. " \
"Input should be a search query."
self.docstore = docstore
def run(self, input, log=False):
if not self.docstore:
self.docstore = DocstoreExplorer(Wikipedia())
assert isinstance(input, self.input_type)
tool = Tool(
name="Search",
func=self.docstore.search,
description="useful for when you need to ask with search"
)
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class DocStoreLookUpWorker(Node):
def __init__(self, name="LookUp", docstore=None):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "Worker that search the direct sentence in current Wikipedia result page. Useful when you " \
"need to find information about a specific keyword from a existing Wikipedia search " \
"result. Input should be a search keyword."
self.docstore = docstore
def run(self, input, log=False):
if not self.docstore:
raise ValueError("Docstore must be provided for lookup")
assert isinstance(input, self.input_type)
tool = Tool(
name="Lookup",
func=self.docstore.lookup,
description="useful for when you need to ask with lookup"
)
evidence = tool.run(input)
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class CustomWolframAlphaAPITool(WolframAlphaAPIWrapper):
def __init__(self):
super().__init__()
def run(self, query: str) -> str:
"""Run query through WolframAlpha and parse result."""
res = self.wolfram_client.query(query)
try:
answer = next(res.results).text
except StopIteration:
return "Wolfram Alpha wasn't able to answer it"
if answer is None or answer == "":
return "No good Wolfram Alpha Result was found"
else:
return f"Answer: {answer}"
class WolframAlphaWorker(Node):
def __init__(self, name="WolframAlpha"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "A WolframAlpha search engine. Useful when you need to solve a complicated Mathematical or " \
"Algebraic equation. Input should be an equation or function."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
tool = CustomWolframAlphaAPITool()
evidence = tool.run(input).replace("Answer:", "").strip()
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class CalculatorWorker(Node):
def __init__(self, name="Calculator"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.description = "A calculator that can compute arithmetic expressions. Useful when you need to perform " \
"math calculations. Input should be a mathematical expression"
def run(self, input, log=False):
assert isinstance(input, self.input_type)
llm = OpenAI(temperature=0)
tool = LLMMathChain(llm=llm, verbose=False)
response = tool(input)
evidence = response["answer"].replace("Answer:", "").strip()
assert isinstance(evidence, self.output_type)
if log:
return {"input": response["question"], "output": response["answer"]}
return evidence
class LLMWorker(Node):
def __init__(self, name="LLM"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.description = "A pretrained LLM like yourself. Useful when you need to act with general world " \
"knowledge and common sense. Prioritize it when you are confident in solving the problem " \
"yourself. Input can be any instruction."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
llm = OpenAI(temperature=0)
prompt = PromptTemplate(template="Respond in short directly with no extra words.\n\n{request}",
input_variables=["request"])
tool = LLMChain(prompt=prompt, llm=llm, verbose=False)
response = tool(input)
evidence = response["text"].strip("\n")
assert isinstance(evidence, self.output_type)
if log:
return {"input": response["request"], "output": response["text"]}
return evidence
class ZipCodeRetriever(Node):
def __init__(self, name="ZipCodeRetriever"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = False
self.description = "A zip code retriever. Useful when you need to get users' current zip code. Input can be " \
"left blank."
def get_ip_address(self):
response = requests.get("https://ipinfo.io/json")
data = response.json()
return data["ip"]
def get_location_data(sefl, ip_address):
url = f"https://ipinfo.io/{ip_address}/json"
response = requests.get(url)
data = response.json()
return data
def get_zipcode_from_lat_long(self, lat, long):
geolocator = Nominatim(user_agent="zipcode_locator")
location = geolocator.reverse((lat, long))
return location.raw["address"]["postcode"]
def get_current_zipcode(self):
ip_address = self.get_ip_address()
location_data = self.get_location_data(ip_address)
lat, long = location_data["loc"].split(",")
zipcode = self.get_zipcode_from_lat_long(float(lat), float(long))
return zipcode
def run(self, input):
assert isinstance(input, self.input_type)
evidence = self.get_current_zipcode()
assert isinstance(evidence, self.output_type)
class SearchDocWorker(Node):
def __init__(self, doc_name, doc_path, name="SearchDoc"):
super().__init__(name, input_type=str, output_type=str)
self.isLLMBased = True
self.doc_path = doc_path
self.description = f"A vector store that searches for similar and related content in document: {doc_name}. " \
f"The result is a huge chunk of text related to your search but can also " \
f"contain irrelevant info. Input should be a search query."
def run(self, input, log=False):
assert isinstance(input, self.input_type)
loader = TextLoader(self.doc_path)
vectorstore = VectorstoreIndexCreator().from_loaders([loader]).vectorstore
evidence = vectorstore.similarity_search(input, k=1)[0].page_content
assert isinstance(evidence, self.output_type)
if log:
print(f"Running {self.name} with input {input}\nOutput: {evidence}\n")
return evidence
class SearchSOTUWorker(SearchDocWorker):
def __init__(self, name="SearchSOTU"):
super().__init__(name=name, doc_name="state_of_the_union", doc_path="data/docs/state_of_the_union.txt")
WORKER_REGISTRY = {"Google": GoogleWorker(),
"Wikipedia": WikipediaWorker(),
"LookUp": DocStoreLookUpWorker(),
"WolframAlpha": WolframAlphaWorker(),
"Calculator": CalculatorWorker(),
"LLM": LLMWorker(),
"SearchSOTU": SearchSOTUWorker()}