Spaces:
Sleeping
Sleeping
| from typing import Callable, List, Optional, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| from diffusers.models.attention_processor import Attention | |
| class JointAttnProcessor2_0: | |
| """Attention processor used typically in processing the SD3-like self-attention projections.""" | |
| def __init__(self): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| context_input_ndim = encoder_hidden_states.ndim | |
| if context_input_ndim == 4: | |
| batch_size, channel, height, width = encoder_hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size = encoder_hidden_states.shape[0] | |
| # `sample` projections. | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| # `context` projections. | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| # attention | |
| query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) | |
| key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) | |
| value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # Split the attention outputs. | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, : residual.shape[1]], | |
| hidden_states[:, residual.shape[1] :], | |
| ) | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if not attn.context_pre_only: | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if context_input_ndim == 4: | |
| encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| return hidden_states, encoder_hidden_states | |
| class IPJointAttnProcessor2_0(torch.nn.Module): | |
| """Attention processor used typically in processing the SD3-like self-attention projections.""" | |
| def __init__(self, context_dim, hidden_dim, scale=1.0): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| super().__init__() | |
| self.scale = scale | |
| self.add_k_proj_ip = nn.Linear(context_dim, hidden_dim) | |
| self.add_v_proj_ip = nn.Linear(context_dim, hidden_dim) | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| ip_hidden_states: torch.FloatTensor = None, | |
| *args, | |
| **kwargs, | |
| ) -> torch.FloatTensor: | |
| residual = hidden_states | |
| input_ndim = hidden_states.ndim | |
| if input_ndim == 4: | |
| batch_size, channel, height, width = hidden_states.shape | |
| hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| context_input_ndim = encoder_hidden_states.ndim | |
| if context_input_ndim == 4: | |
| batch_size, channel, height, width = encoder_hidden_states.shape | |
| encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| batch_size = encoder_hidden_states.shape[0] | |
| # `sample` projections. | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| sample_query = query # latent query | |
| # `context` projections. | |
| encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) | |
| encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) | |
| encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) | |
| # attention | |
| query = torch.cat([query, encoder_hidden_states_query_proj], dim=1) | |
| key = torch.cat([key, encoder_hidden_states_key_proj], dim=1) | |
| value = torch.cat([value, encoder_hidden_states_value_proj], dim=1) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| # Split the attention outputs. | |
| hidden_states, encoder_hidden_states = ( | |
| hidden_states[:, : residual.shape[1]], | |
| hidden_states[:, residual.shape[1] :], | |
| ) | |
| # for ip-adapter | |
| ip_key = self.add_k_proj_ip(ip_hidden_states) | |
| ip_value = self.add_v_proj_ip(ip_hidden_states) | |
| ip_query = sample_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| ip_hidden_states = F.scaled_dot_product_attention(ip_query, ip_key, ip_value, dropout_p=0.0, is_causal=False) | |
| ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| ip_hidden_states = ip_hidden_states.to(ip_query.dtype) | |
| hidden_states = hidden_states + self.scale * ip_hidden_states | |
| # linear proj | |
| hidden_states = attn.to_out[0](hidden_states) | |
| # dropout | |
| hidden_states = attn.to_out[1](hidden_states) | |
| if not attn.context_pre_only: | |
| encoder_hidden_states = attn.to_add_out(encoder_hidden_states) | |
| if input_ndim == 4: | |
| hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| if context_input_ndim == 4: | |
| encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) | |
| return hidden_states, encoder_hidden_states | |