Spaces:
Runtime error
Runtime error
import torch | |
from torch.nn.functional import silu | |
from types import MethodType | |
import modules.textual_inversion.textual_inversion | |
from modules import devices, sd_hijack_optimizations, shared, sd_hijack_checkpoint | |
from modules.hypernetworks import hypernetwork | |
from modules.shared import cmd_opts | |
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr | |
import ldm.modules.attention | |
import ldm.modules.diffusionmodules.model | |
import ldm.modules.diffusionmodules.openaimodel | |
import ldm.models.diffusion.ddim | |
import ldm.models.diffusion.plms | |
import ldm.modules.encoders.modules | |
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward | |
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity | |
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward | |
# new memory efficient cross attention blocks do not support hypernets and we already | |
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention | |
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention | |
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention | |
# silence new console spam from SD2 | |
ldm.modules.attention.print = lambda *args: None | |
ldm.modules.diffusionmodules.model.print = lambda *args: None | |
def apply_optimizations(): | |
undo_optimizations() | |
ldm.modules.diffusionmodules.model.nonlinearity = silu | |
ldm.modules.diffusionmodules.openaimodel.th = sd_hijack_unet.th | |
optimization_method = None | |
if cmd_opts.force_enable_xformers or (cmd_opts.xformers and shared.xformers_available and torch.version.cuda and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0)): | |
print("Applying xformers cross attention optimization.") | |
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.xformers_attention_forward | |
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.xformers_attnblock_forward | |
optimization_method = 'xformers' | |
elif cmd_opts.opt_sub_quad_attention: | |
print("Applying sub-quadratic cross attention optimization.") | |
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.sub_quad_attention_forward | |
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.sub_quad_attnblock_forward | |
optimization_method = 'sub-quadratic' | |
elif cmd_opts.opt_split_attention_v1: | |
print("Applying v1 cross attention optimization.") | |
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 | |
optimization_method = 'V1' | |
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention_invokeai or not cmd_opts.opt_split_attention and not torch.cuda.is_available()): | |
print("Applying cross attention optimization (InvokeAI).") | |
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_invokeAI | |
optimization_method = 'InvokeAI' | |
elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): | |
print("Applying cross attention optimization (Doggettx).") | |
ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward | |
ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward | |
optimization_method = 'Doggettx' | |
return optimization_method | |
def undo_optimizations(): | |
ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward | |
ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity | |
ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward | |
def fix_checkpoint(): | |
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want | |
checkpoints to be added when not training (there's a warning)""" | |
pass | |
def weighted_loss(sd_model, pred, target, mean=True): | |
#Calculate the weight normally, but ignore the mean | |
loss = sd_model._old_get_loss(pred, target, mean=False) | |
#Check if we have weights available | |
weight = getattr(sd_model, '_custom_loss_weight', None) | |
if weight is not None: | |
loss *= weight | |
#Return the loss, as mean if specified | |
return loss.mean() if mean else loss | |
def weighted_forward(sd_model, x, c, w, *args, **kwargs): | |
try: | |
#Temporarily append weights to a place accessible during loss calc | |
sd_model._custom_loss_weight = w | |
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely | |
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set | |
if not hasattr(sd_model, '_old_get_loss'): | |
sd_model._old_get_loss = sd_model.get_loss | |
sd_model.get_loss = MethodType(weighted_loss, sd_model) | |
#Run the standard forward function, but with the patched 'get_loss' | |
return sd_model.forward(x, c, *args, **kwargs) | |
finally: | |
try: | |
#Delete temporary weights if appended | |
del sd_model._custom_loss_weight | |
except AttributeError as e: | |
pass | |
#If we have an old loss function, reset the loss function to the original one | |
if hasattr(sd_model, '_old_get_loss'): | |
sd_model.get_loss = sd_model._old_get_loss | |
del sd_model._old_get_loss | |
def apply_weighted_forward(sd_model): | |
#Add new function 'weighted_forward' that can be called to calc weighted loss | |
sd_model.weighted_forward = MethodType(weighted_forward, sd_model) | |
def undo_weighted_forward(sd_model): | |
try: | |
del sd_model.weighted_forward | |
except AttributeError as e: | |
pass | |
class StableDiffusionModelHijack: | |
fixes = None | |
comments = [] | |
layers = None | |
circular_enabled = False | |
clip = None | |
optimization_method = None | |
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase() | |
def __init__(self): | |
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir) | |
def hijack(self, m): | |
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: | |
model_embeddings = m.cond_stage_model.roberta.embeddings | |
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.word_embeddings, self) | |
m.cond_stage_model = sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords(m.cond_stage_model, self) | |
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenCLIPEmbedder: | |
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | |
model_embeddings.token_embedding = EmbeddingsWithFixes(model_embeddings.token_embedding, self) | |
m.cond_stage_model = sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) | |
elif type(m.cond_stage_model) == ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder: | |
m.cond_stage_model.model.token_embedding = EmbeddingsWithFixes(m.cond_stage_model.model.token_embedding, self) | |
m.cond_stage_model = sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords(m.cond_stage_model, self) | |
apply_weighted_forward(m) | |
if m.cond_stage_key == "edit": | |
sd_hijack_unet.hijack_ddpm_edit() | |
self.optimization_method = apply_optimizations() | |
self.clip = m.cond_stage_model | |
def flatten(el): | |
flattened = [flatten(children) for children in el.children()] | |
res = [el] | |
for c in flattened: | |
res += c | |
return res | |
self.layers = flatten(m) | |
def undo_hijack(self, m): | |
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation: | |
m.cond_stage_model = m.cond_stage_model.wrapped | |
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords: | |
m.cond_stage_model = m.cond_stage_model.wrapped | |
model_embeddings = m.cond_stage_model.transformer.text_model.embeddings | |
if type(model_embeddings.token_embedding) == EmbeddingsWithFixes: | |
model_embeddings.token_embedding = model_embeddings.token_embedding.wrapped | |
elif type(m.cond_stage_model) == sd_hijack_open_clip.FrozenOpenCLIPEmbedderWithCustomWords: | |
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped | |
m.cond_stage_model = m.cond_stage_model.wrapped | |
undo_optimizations() | |
undo_weighted_forward(m) | |
self.apply_circular(False) | |
self.layers = None | |
self.clip = None | |
def apply_circular(self, enable): | |
if self.circular_enabled == enable: | |
return | |
self.circular_enabled = enable | |
for layer in [layer for layer in self.layers if type(layer) == torch.nn.Conv2d]: | |
layer.padding_mode = 'circular' if enable else 'zeros' | |
def clear_comments(self): | |
self.comments = [] | |
def get_prompt_lengths(self, text): | |
_, token_count = self.clip.process_texts([text]) | |
return token_count, self.clip.get_target_prompt_token_count(token_count) | |
class EmbeddingsWithFixes(torch.nn.Module): | |
def __init__(self, wrapped, embeddings): | |
super().__init__() | |
self.wrapped = wrapped | |
self.embeddings = embeddings | |
def forward(self, input_ids): | |
batch_fixes = self.embeddings.fixes | |
self.embeddings.fixes = None | |
inputs_embeds = self.wrapped(input_ids) | |
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: | |
return inputs_embeds | |
vecs = [] | |
for fixes, tensor in zip(batch_fixes, inputs_embeds): | |
for offset, embedding in fixes: | |
emb = devices.cond_cast_unet(embedding.vec) | |
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0]) | |
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]) | |
vecs.append(tensor) | |
return torch.stack(vecs) | |
def add_circular_option_to_conv_2d(): | |
conv2d_constructor = torch.nn.Conv2d.__init__ | |
def conv2d_constructor_circular(self, *args, **kwargs): | |
return conv2d_constructor(self, *args, padding_mode='circular', **kwargs) | |
torch.nn.Conv2d.__init__ = conv2d_constructor_circular | |
model_hijack = StableDiffusionModelHijack() | |
def register_buffer(self, name, attr): | |
""" | |
Fix register buffer bug for Mac OS. | |
""" | |
if type(attr) == torch.Tensor: | |
if attr.device != devices.device: | |
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None)) | |
setattr(self, name, attr) | |
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer | |
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer | |