KevinHuSh commited on
Commit
f9d77f2
·
1 Parent(s): 565e3eb

add keyword extraction in graph (#1373)

Browse files

### What problem does this PR solve?
#918

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

api/apps/canvas_app.py CHANGED
@@ -142,16 +142,19 @@ def run():
142
 
143
 
144
  @manager.route('/reset', methods=['POST'])
145
- @validate_request("canvas_id")
146
  @login_required
147
  def reset():
148
  req = request.json
149
  try:
150
- user_canvas = UserCanvasService.get_by_id(req["canvas_id"])
151
- canvas = Canvas(user_canvas.dsl, current_user.id)
 
 
 
152
  canvas.reset()
153
  req["dsl"] = json.loads(str(canvas))
154
- UserCanvasService.update_by_id(req["canvas_id"], dsl=req["dsl"])
155
  return get_json_result(data=req["dsl"])
156
  except Exception as e:
157
  return server_error_response(e)
 
142
 
143
 
144
  @manager.route('/reset', methods=['POST'])
145
+ @validate_request("id")
146
  @login_required
147
  def reset():
148
  req = request.json
149
  try:
150
+ e, user_canvas = UserCanvasService.get_by_id(req["id"])
151
+ if not e:
152
+ return server_error_response("canvas not found.")
153
+
154
+ canvas = Canvas(json.dumps(user_canvas.dsl), current_user.id)
155
  canvas.reset()
156
  req["dsl"] = json.loads(str(canvas))
157
+ UserCanvasService.update_by_id(req["id"], {"dsl": req["dsl"]})
158
  return get_json_result(data=req["dsl"])
159
  except Exception as e:
160
  return server_error_response(e)
api/db/init_data.py CHANGED
@@ -156,7 +156,7 @@ factory_infos = [{
156
  "tags": "TEXT EMBEDDING, TEXT RE-RANK",
157
  "status": "1",
158
  },{
159
- "name": "Minimax",
160
  "logo": "",
161
  "tags": "LLM,TEXT EMBEDDING",
162
  "status": "1",
 
156
  "tags": "TEXT EMBEDDING, TEXT RE-RANK",
157
  "status": "1",
158
  },{
159
+ "name": "MiniMax",
160
  "logo": "",
161
  "tags": "LLM,TEXT EMBEDDING",
162
  "status": "1",
graph/canvas.py CHANGED
@@ -102,19 +102,26 @@ class Canvas(ABC):
102
  self.load()
103
 
104
  def load(self):
105
- assert self.dsl.get("components", {}).get("begin"), "There have to be a 'Begin' component."
106
-
107
  self.components = self.dsl["components"]
 
 
 
 
 
 
 
108
  for k, cpn in self.components.items():
 
109
  param = component_class(cpn["obj"]["component_name"] + "Param")()
110
  param.update(cpn["obj"]["params"])
111
  param.check()
112
  cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
113
  if cpn["obj"].component_name == "Categorize":
114
- for _,desc in param.category_description.items():
115
  if desc["to"] not in cpn["downstream"]:
116
  cpn["downstream"].append(desc["to"])
117
 
 
118
  self.path = self.dsl["path"]
119
  self.history = self.dsl["history"]
120
  self.messages = self.dsl["messages"]
@@ -140,7 +147,8 @@ class Canvas(ABC):
140
  self.messages = []
141
  self.answer = []
142
  self.reference = []
143
- self.components = {}
 
144
  self._embed_id = ""
145
 
146
  def run(self, **kwargs):
@@ -176,7 +184,7 @@ class Canvas(ABC):
176
  ran += 1
177
 
178
  prepare2run(self.components[self.path[-2][-1]]["downstream"])
179
- while ran < len(self.path[-1]):
180
  if DEBUG: print(ran, self.path)
181
  cpn_id = self.path[-1][ran]
182
  cpn = self.get_component(cpn_id)
 
102
  self.load()
103
 
104
  def load(self):
 
 
105
  self.components = self.dsl["components"]
106
+ cpn_nms = set([])
107
+ for k, cpn in self.components.items():
108
+ cpn_nms.add(cpn["obj"]["component_name"])
109
+
110
+ assert "Begin" in cpn_nms, "There have to be an 'Begin' component."
111
+ assert "Answer" in cpn_nms, "There have to be an 'Answer' component."
112
+
113
  for k, cpn in self.components.items():
114
+ cpn_nms.add(cpn["obj"]["component_name"])
115
  param = component_class(cpn["obj"]["component_name"] + "Param")()
116
  param.update(cpn["obj"]["params"])
117
  param.check()
118
  cpn["obj"] = component_class(cpn["obj"]["component_name"])(self, k, param)
119
  if cpn["obj"].component_name == "Categorize":
120
+ for _, desc in param.category_description.items():
121
  if desc["to"] not in cpn["downstream"]:
122
  cpn["downstream"].append(desc["to"])
123
 
124
+
125
  self.path = self.dsl["path"]
126
  self.history = self.dsl["history"]
127
  self.messages = self.dsl["messages"]
 
147
  self.messages = []
148
  self.answer = []
149
  self.reference = []
150
+ for k, cpn in self.components.items():
151
+ self.components[k]["obj"].reset()
152
  self._embed_id = ""
153
 
154
  def run(self, **kwargs):
 
184
  ran += 1
185
 
186
  prepare2run(self.components[self.path[-2][-1]]["downstream"])
187
+ while 0 <= ran < len(self.path[-1]):
188
  if DEBUG: print(ran, self.path)
189
  cpn_id = self.path[-1][ran]
190
  cpn = self.get_component(cpn_id)
graph/component/base.py CHANGED
@@ -418,6 +418,9 @@ class ComponentBase(ABC):
418
  o = pd.DataFrame(o)
419
  return self._param.output_var_name, o
420
 
 
 
 
421
  def set_output(self, v: pd.DataFrame):
422
  setattr(self._param, self._param.output_var_name, v)
423
 
 
418
  o = pd.DataFrame(o)
419
  return self._param.output_var_name, o
420
 
421
+ def reset(self):
422
+ setattr(self._param, self._param.output_var_name, None)
423
+
424
  def set_output(self, v: pd.DataFrame):
425
  setattr(self._param, self._param.output_var_name, v)
426
 
graph/component/keyword.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ #
16
+ import re
17
+ from abc import ABC
18
+ from api.db import LLMType
19
+ from api.db.services.llm_service import LLMBundle
20
+ from graph.component import GenerateParam, Generate
21
+ from graph.settings import DEBUG
22
+
23
+
24
+ class KeywordExtractParam(GenerateParam):
25
+
26
+ """
27
+ Define the KeywordExtract component parameters.
28
+ """
29
+ def __init__(self):
30
+ super().__init__()
31
+ self.temperature = 0.5
32
+ self.prompt = ""
33
+ self.topn = 1
34
+
35
+ def check(self):
36
+ super().check()
37
+
38
+ def get_prompt(self):
39
+ self.prompt = """
40
+ - Role: You're a question analyzer.
41
+ - Requirements:
42
+ - Summarize user's question, and give top %s important keyword/phrase.
43
+ - Use comma as a delimiter to separate keywords/phrases.
44
+ - Answer format: (in language of user's question)
45
+ - keyword:
46
+ """%self.topn
47
+ return self.prompt
48
+
49
+
50
+ class KeywordExtract(Generate, ABC):
51
+ component_name = "RewriteQuestion"
52
+
53
+ def _run(self, history, **kwargs):
54
+ q = ""
55
+ for r, c in self._canvas.history[::-1]:
56
+ if r == "user":
57
+ q += c
58
+ break
59
+
60
+ chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
61
+ ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": q}],
62
+ self._param.gen_conf())
63
+
64
+ ans = re.sub(r".*keyword:", "", ans).strip()
65
+ if DEBUG: print(ans, ":::::::::::::::::::::::::::::::::")
66
+ return KeywordExtract.be_output(ans)
67
+
68
+
graph/templates/HR_callout_zh.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "id": 0,
3
  "title": "HR call-out assistant(Chinese)",
4
  "description": "A HR call-out assistant. It will introduce the given job, answer the candidates' question about this job. And the most important thing is that it will try to obtain the contact information of the candidates. What you need to do is to link a knowledgebase which contains job description in 'Retrieval' component.",
5
  "canvas_type": "chatbot",
 
1
  {
2
+ "id": 1,
3
  "title": "HR call-out assistant(Chinese)",
4
  "description": "A HR call-out assistant. It will introduce the given job, answer the candidates' question about this job. And the most important thing is that it will try to obtain the contact information of the candidates. What you need to do is to link a knowledgebase which contains job description in 'Retrieval' component.",
5
  "canvas_type": "chatbot",
graph/templates/customer_service.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "id": 1,
3
  "title": "Customer service",
4
  "description": "A call-in customer service chat bot. It will provide useful information about the products, answer customers' questions and soothe the customers' bad emotions.",
5
  "canvas_type": "chatbot",
@@ -106,7 +106,7 @@
106
  "upstream": ["categorize:0"]
107
  },
108
  "generate:complain": {
109
- "downstream": [],
110
  "obj": {
111
  "component_name": "Generate",
112
  "params": {
@@ -116,7 +116,7 @@
116
  "prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers’ emotions at first place."
117
  }
118
  },
119
- "upstream": ["categorize:0", "answer:0"]
120
  },
121
  "message:get_contact": {
122
  "downstream": ["answer:0"],
@@ -286,13 +286,13 @@
286
  {
287
  "id": "reactflow__edge-answer:0a-generate:complaind",
288
  "markerEnd": "logo",
289
- "source": "answer:0",
290
  "sourceHandle": "a",
291
  "style": {
292
  "stroke": "rgb(202 197 245)",
293
  "strokeWidth": 2
294
  },
295
- "target": "generate:complain",
296
  "targetHandle": "d",
297
  "type": "buttonEdge"
298
  },
 
1
  {
2
+ "id": 2,
3
  "title": "Customer service",
4
  "description": "A call-in customer service chat bot. It will provide useful information about the products, answer customers' questions and soothe the customers' bad emotions.",
5
  "canvas_type": "chatbot",
 
106
  "upstream": ["categorize:0"]
107
  },
108
  "generate:complain": {
109
+ "downstream": ["answer:0"],
110
  "obj": {
111
  "component_name": "Generate",
112
  "params": {
 
116
  "prompt": "You are a customer support. the Customers complain even curse about the products but not specific enough. You need to ask him/her what's the specific problem with the product. Be nice, patient and concern to soothe your customers’ emotions at first place."
117
  }
118
  },
119
+ "upstream": ["categorize:0"]
120
  },
121
  "message:get_contact": {
122
  "downstream": ["answer:0"],
 
286
  {
287
  "id": "reactflow__edge-answer:0a-generate:complaind",
288
  "markerEnd": "logo",
289
+ "source": "generate:complain",
290
  "sourceHandle": "a",
291
  "style": {
292
  "stroke": "rgb(202 197 245)",
293
  "strokeWidth": 2
294
  },
295
+ "target": "answer:0",
296
  "targetHandle": "d",
297
  "type": "buttonEdge"
298
  },
graph/templates/general_chat_bot.json ADDED
@@ -0,0 +1,335 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "id": 0,
3
+ "title": "Chat bot",
4
+ "description": "A general chat bot. It is based on Self-RAG mechanism. What you need to do is setting up knowleage base in 'Retrieval'",
5
+ "canvas_type": "chatbot",
6
+ "dsl": {
7
+ "answer": [],
8
+ "components": {
9
+ "answer:0": {
10
+ "downstream": ["retrieval:0"],
11
+ "obj": {
12
+ "component_name": "Answer",
13
+ "params": {}
14
+ },
15
+ "upstream": ["begin", "generate:0"]
16
+ },
17
+ "begin": {
18
+ "downstream": ["answer:0"],
19
+ "obj": {
20
+ "component_name": "Begin",
21
+ "params": {
22
+ "prologue": "Hi there!"
23
+ }
24
+ },
25
+ "upstream": []
26
+ },
27
+ "generate:0": {
28
+ "downstream": ["answer:0"],
29
+ "obj": {
30
+ "component_name": "Generate",
31
+ "params": {
32
+ "llm_id": "deepseek-chat",
33
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base."
34
+ }
35
+ },
36
+ "upstream": ["relevant:0"]
37
+ },
38
+ "relevant:0": {
39
+ "downstream": ["rewrite:0", "generate:0"],
40
+ "obj": {
41
+ "component_name": "Relevant",
42
+ "params": {
43
+ "llm_id": "deepseek-chat",
44
+ "no": "rewrite:0",
45
+ "temperature": 0.02,
46
+ "yes": "generate:0"
47
+ }
48
+ },
49
+ "upstream": ["retrieval:0"]
50
+ },
51
+ "retrieval:0": {
52
+ "downstream": ["relevant:0"],
53
+ "obj": {
54
+ "component_name": "Retrieval",
55
+ "params": {
56
+ "empty_response": "Sorry, knowledge base has noting related information.",
57
+ "kb_ids": ["869a236818b811ef91dffa163e197198"],
58
+ "keywords_similarity_weight": 0.3,
59
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
60
+ "similarity_threshold": 0.2,
61
+ "top_k": 1024,
62
+ "top_n": 6
63
+ }
64
+ },
65
+ "upstream": ["answer:0", "rewrite:0"]
66
+ },
67
+ "rewrite:0": {
68
+ "downstream": ["retrieval:0"],
69
+ "obj": {
70
+ "component_name": "RewriteQuestion",
71
+ "params": {
72
+ "llm_id": "deepseek-chat",
73
+ "temperature": 0.8
74
+ }
75
+ },
76
+ "upstream": ["relevant:0"]
77
+ }
78
+ },
79
+ "graph": {
80
+ "edges": [
81
+ {
82
+ "id": "81de838d-a541-4b3f-9d68-9172ffd7c6b4",
83
+ "label": "",
84
+ "source": "begin",
85
+ "target": "answer:0"
86
+ },
87
+ {
88
+ "id": "reactflow__edge-answer:0b-retrieval:0c",
89
+ "markerEnd": "logo",
90
+ "source": "answer:0",
91
+ "sourceHandle": "b",
92
+ "style": {
93
+ "stroke": "rgb(202 197 245)",
94
+ "strokeWidth": 2
95
+ },
96
+ "target": "retrieval:0",
97
+ "targetHandle": "c",
98
+ "type": "buttonEdge"
99
+ },
100
+ {
101
+ "id": "reactflow__edge-generate:0d-answer:0a",
102
+ "markerEnd": "logo",
103
+ "source": "generate:0",
104
+ "sourceHandle": "d",
105
+ "style": {
106
+ "stroke": "rgb(202 197 245)",
107
+ "strokeWidth": 2
108
+ },
109
+ "target": "answer:0",
110
+ "targetHandle": "a",
111
+ "type": "buttonEdge"
112
+ },
113
+ {
114
+ "id": "reactflow__edge-retrieval:0a-relevant:0b",
115
+ "markerEnd": "logo",
116
+ "source": "retrieval:0",
117
+ "sourceHandle": "a",
118
+ "style": {
119
+ "stroke": "rgb(202 197 245)",
120
+ "strokeWidth": 2
121
+ },
122
+ "target": "relevant:0",
123
+ "targetHandle": "b",
124
+ "type": "buttonEdge"
125
+ },
126
+ {
127
+ "id": "reactflow__edge-rewrite:0d-retrieval:0b",
128
+ "markerEnd": "logo",
129
+ "source": "rewrite:0",
130
+ "sourceHandle": "d",
131
+ "style": {
132
+ "stroke": "rgb(202 197 245)",
133
+ "strokeWidth": 2
134
+ },
135
+ "target": "retrieval:0",
136
+ "targetHandle": "b",
137
+ "type": "buttonEdge"
138
+ },
139
+ {
140
+ "id": "reactflow__edge-relevant:0no-rewrite:0a",
141
+ "markerEnd": "logo",
142
+ "source": "relevant:0",
143
+ "sourceHandle": "no",
144
+ "style": {
145
+ "stroke": "rgb(202 197 245)",
146
+ "strokeWidth": 2
147
+ },
148
+ "target": "rewrite:0",
149
+ "targetHandle": "a",
150
+ "type": "buttonEdge"
151
+ },
152
+ {
153
+ "id": "reactflow__edge-relevant:0yes-generate:0b",
154
+ "markerEnd": "logo",
155
+ "source": "relevant:0",
156
+ "sourceHandle": "yes",
157
+ "style": {
158
+ "stroke": "rgb(202 197 245)",
159
+ "strokeWidth": 2
160
+ },
161
+ "target": "generate:0",
162
+ "targetHandle": "b",
163
+ "type": "buttonEdge"
164
+ }
165
+ ],
166
+ "nodes": [
167
+ {
168
+ "data": {
169
+ "form": {
170
+ "prologue": "Hi there!"
171
+ },
172
+ "label": "Begin",
173
+ "name": "Opening"
174
+ },
175
+ "dragging": false,
176
+ "height": 50,
177
+ "id": "begin",
178
+ "position": {
179
+ "x": -304.50000000000006,
180
+ "y": -2.9994670375766646
181
+ },
182
+ "positionAbsolute": {
183
+ "x": -304.50000000000006,
184
+ "y": -2.9994670375766646
185
+ },
186
+ "selected": false,
187
+ "sourcePosition": "left",
188
+ "targetPosition": "right",
189
+ "type": "beginNode",
190
+ "width": 50
191
+ },
192
+ {
193
+ "data": {
194
+ "form": {},
195
+ "label": "Answer",
196
+ "name": "Interface"
197
+ },
198
+ "dragging": false,
199
+ "height": 100,
200
+ "id": "answer:0",
201
+ "position": {
202
+ "x": -89.78929141627594,
203
+ "y": -29.530900170597448
204
+ },
205
+ "positionAbsolute": {
206
+ "x": -89.78929141627594,
207
+ "y": -29.530900170597448
208
+ },
209
+ "selected": false,
210
+ "sourcePosition": "left",
211
+ "targetPosition": "right",
212
+ "type": "ragNode",
213
+ "width": 100
214
+ },
215
+ {
216
+ "data": {
217
+ "form": {
218
+ "empty_response": "Sorry, knowledge base has noting related information.",
219
+ "kb_ids": ["869a236818b811ef91dffa163e197198"],
220
+ "keywords_similarity_weight": 0.3,
221
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
222
+ "similarity_threshold": 0.2,
223
+ "top_k": 1024,
224
+ "top_n": 6
225
+ },
226
+ "label": "Retrieval",
227
+ "name": "Search KB"
228
+ },
229
+ "dragging": false,
230
+ "height": 100,
231
+ "id": "retrieval:0",
232
+ "position": {
233
+ "x": 225.1100159655728,
234
+ "y": -28.569259485130402
235
+ },
236
+ "positionAbsolute": {
237
+ "x": 225.1100159655728,
238
+ "y": -28.569259485130402
239
+ },
240
+ "selected": true,
241
+ "sourcePosition": "left",
242
+ "targetPosition": "right",
243
+ "type": "ragNode",
244
+ "width": 100
245
+ },
246
+ {
247
+ "data": {
248
+ "form": {
249
+ "llm_id": "deepseek-chat",
250
+ "no": "rewrite:0",
251
+ "temperature": 0.02,
252
+ "yes": "generate:0"
253
+ },
254
+ "label": "Relevant",
255
+ "name": "Relevant?"
256
+ },
257
+ "dragging": false,
258
+ "height": 70,
259
+ "id": "relevant:0",
260
+ "position": {
261
+ "x": 225.36494412049518,
262
+ "y": 307.7194989687223
263
+ },
264
+ "positionAbsolute": {
265
+ "x": 225.36494412049518,
266
+ "y": 307.7194989687223
267
+ },
268
+ "selected": false,
269
+ "sourcePosition": "left",
270
+ "targetPosition": "right",
271
+ "type": "relevantNode",
272
+ "width": 70
273
+ },
274
+ {
275
+ "data": {
276
+ "form": {
277
+ "llm_id": "deepseek-chat",
278
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
279
+ "temperature": 0.02
280
+ },
281
+ "label": "Generate",
282
+ "name": "LLM"
283
+ },
284
+ "dragging": false,
285
+ "height": 150,
286
+ "id": "generate:0",
287
+ "position": {
288
+ "x": -90.09669656497177,
289
+ "y": 192.12280240375043
290
+ },
291
+ "positionAbsolute": {
292
+ "x": -90.09669656497177,
293
+ "y": 192.12280240375043
294
+ },
295
+ "selected": false,
296
+ "sourcePosition": "left",
297
+ "targetPosition": "right",
298
+ "type": "ragNode",
299
+ "width": 150
300
+ },
301
+ {
302
+ "data": {
303
+ "form": {
304
+ "llm_id": "deepseek-chat",
305
+ "temperature": 0.8
306
+ },
307
+ "label": "RewriteQuestion",
308
+ "name": "Refine Ques"
309
+ },
310
+ "dragging": false,
311
+ "height": 70,
312
+ "id": "rewrite:0",
313
+ "position": {
314
+ "x": 416.0628662660416,
315
+ "y": 144.09722952739514
316
+ },
317
+ "positionAbsolute": {
318
+ "x": 416.0628662660416,
319
+ "y": 144.09722952739514
320
+ },
321
+ "selected": false,
322
+ "sourcePosition": "left",
323
+ "targetPosition": "right",
324
+ "type": "ragNode",
325
+ "width": 70
326
+ }
327
+ ]
328
+ },
329
+ "history": [],
330
+ "messages": [],
331
+ "path": [],
332
+ "reference": []
333
+ },
334
+ "avatar": ""
335
+ }
graph/templates/interpreter.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "id": 2,
3
  "title": "Interpreter",
4
  "description": "An interpreter. Type the content you want to translate and the object language like: Hi there => Spanish. Hava a try!",
5
  "canvas_type": "chatbot",
 
1
  {
2
+ "id": 3,
3
  "title": "Interpreter",
4
  "description": "An interpreter. Type the content you want to translate and the object language like: Hi there => Spanish. Hava a try!",
5
  "canvas_type": "chatbot",
graph/test/dsl_examples/retrieval_relevant_rewrite_and_generate.json CHANGED
@@ -1,79 +1,79 @@
1
  {
2
  "components": {
3
- "begin": {
4
- "obj": {
5
- "component_name": "Begin",
6
- "params": {
7
- "prologue": "Hi there!"
8
- }
9
- },
10
- "downstream": ["answer:0"],
11
- "upstream": []
12
- },
13
- "answer:0": {
14
- "obj": {
15
- "component_name": "Answer",
16
- "params": {}
17
- },
18
- "downstream": ["retrieval:0"],
19
- "upstream": ["begin", "generate:0"]
20
- },
21
- "retrieval:0": {
22
- "obj": {
23
- "component_name": "Retrieval",
24
- "params": {
25
- "similarity_threshold": 0.2,
26
- "keywords_similarity_weight": 0.3,
27
- "top_n": 6,
28
- "top_k": 1024,
29
- "rerank_id": "BAAI/bge-reranker-v2-m3",
30
- "kb_ids": ["869a236818b811ef91dffa163e197198"],
31
- "empty_response": "Sorry, knowledge base has noting related information."
32
- }
33
- },
34
- "downstream": ["relevant:0"],
35
- "upstream": ["answer:0", "rewrite:0"]
36
- },
37
- "relevant:0": {
38
- "obj": {
39
- "component_name": "Relevant",
40
- "params": {
41
- "llm_id": "deepseek-chat",
42
- "temperature": 0.02,
43
- "yes": "generate:0",
44
- "no": "rewrite:0"
45
- }
46
- },
47
- "downstream": ["generate:0", "rewrite:0"],
48
- "upstream": ["retrieval:0"]
49
- },
50
- "generate:0": {
51
- "obj": {
52
- "component_name": "Generate",
53
- "params": {
54
- "llm_id": "deepseek-chat",
55
- "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
56
- "temperature": 0.02
57
- }
58
- },
59
- "downstream": ["answer:0"],
60
- "upstream": ["relevant:0"]
61
- },
62
- "rewrite:0": {
63
- "obj": {
64
- "component_name": "RewriteQuestion",
65
- "params": {
66
- "llm_id": "deepseek-chat",
67
- "temperature": 0.8
68
- }
69
- },
70
- "downstream": ["retrieval:0"],
71
- "upstream": ["relevant:0"]
72
- }
73
  },
74
  "history": [],
75
  "messages": [],
76
  "path": [],
77
  "reference": [],
78
  "answer": []
79
- }
 
1
  {
2
  "components": {
3
+ "begin": {
4
+ "obj":{
5
+ "component_name": "Begin",
6
+ "params": {
7
+ "prologue": "Hi there!"
8
+ }
9
+ },
10
+ "downstream": ["answer:0"],
11
+ "upstream": []
12
+ },
13
+ "answer:0": {
14
+ "obj": {
15
+ "component_name": "Answer",
16
+ "params": {}
17
+ },
18
+ "downstream": ["retrieval:0"],
19
+ "upstream": ["begin", "generate:0", "switch:0"]
20
+ },
21
+ "retrieval:0": {
22
+ "obj": {
23
+ "component_name": "Retrieval",
24
+ "params": {
25
+ "similarity_threshold": 0.2,
26
+ "keywords_similarity_weight": 0.3,
27
+ "top_n": 6,
28
+ "top_k": 1024,
29
+ "rerank_id": "BAAI/bge-reranker-v2-m3",
30
+ "kb_ids": ["869a236818b811ef91dffa163e197198"],
31
+ "empty_response": "Sorry, knowledge base has noting related information."
32
+ }
33
+ },
34
+ "downstream": ["relevant:0"],
35
+ "upstream": ["answer:0", "rewrite:0"]
36
+ },
37
+ "relevant:0": {
38
+ "obj": {
39
+ "component_name": "Relevant",
40
+ "params": {
41
+ "llm_id": "deepseek-chat",
42
+ "temperature": 0.02,
43
+ "yes": "generate:0",
44
+ "no": "rewrite:0"
45
+ }
46
+ },
47
+ "downstream": ["generate:0", "rewrite:0"],
48
+ "upstream": ["retrieval:0"]
49
+ },
50
+ "generate:0": {
51
+ "obj": {
52
+ "component_name": "Generate",
53
+ "params": {
54
+ "llm_id": "deepseek-chat",
55
+ "prompt": "You are an intelligent assistant. Please answer the question based on content of knowledge base. When all knowledge base content is irrelevant to the question, your answer must include the sentence \"The answer you are looking for is not found in the knowledge base!\". Answers need to consider chat history.\n Knowledge base content is as following:\n {input}\n The above is the content of knowledge base.",
56
+ "temperature": 0.02
57
+ }
58
+ },
59
+ "downstream": ["answer:0"],
60
+ "upstream": ["relevant:0"]
61
+ },
62
+ "rewrite:0": {
63
+ "obj":{
64
+ "component_name": "RewriteQuestion",
65
+ "params": {
66
+ "llm_id": "deepseek-chat",
67
+ "temperature": 0.8
68
+ }
69
+ },
70
+ "downstream": ["retrieval:0"],
71
+ "upstream": ["relevant:0"]
72
+ }
73
  },
74
  "history": [],
75
  "messages": [],
76
  "path": [],
77
  "reference": [],
78
  "answer": []
79
+ }
rag/llm/chat_model.py CHANGED
@@ -95,6 +95,7 @@ class DeepSeekChat(Base):
95
  if not base_url: base_url="https://api.deepseek.com/v1"
96
  super().__init__(key, model_name, base_url)
97
 
 
98
  class AzureChat(Base):
99
  def __init__(self, key, model_name, **kwargs):
100
  self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
 
95
  if not base_url: base_url="https://api.deepseek.com/v1"
96
  super().__init__(key, model_name, base_url)
97
 
98
+
99
  class AzureChat(Base):
100
  def __init__(self, key, model_name, **kwargs):
101
  self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")