balibabu commited on
Commit
cfbf213
·
1 Parent(s): d0f14c1

feat: add logo-with-text.png (#184)

Browse files

* feat: alter "RagFlow" to "RAGFlow"

* feat: move logo style to style tag

* feat: add logo-with-text.png

* feat: hide TranslationIcon

README.md CHANGED
@@ -1,10 +1,9 @@
1
  <div align="center">
2
  <a href="https://demo.ragflow.io/">
3
- <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo">
4
  </a>
5
  </div>
6
 
7
-
8
  <p align="center">
9
  <a href="./README.md">English</a> |
10
  <a href="./README_zh.md">简体中文</a>
@@ -26,27 +25,32 @@
26
  [RAGFlow](http://demo.ragflow.io) is an open-source, Retrieval-Augmented Generation engine built on large language models (LLM), deep document understanding, and multiple recall. It offers a streamlined RAG workflow for businesses of any scale, providing truthful responses with solid citations through a generative AI knowledge management platform.
27
 
28
  ## 🌟 Key Features
29
-
30
  ### 🍭 **"Quality in, quality out"**
31
- - Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
32
- - Finds "needle in a data haystack" of literally unlimited tokens.
 
33
 
34
  ### 🍱 **Template-based chunking**
35
- - Intelligent and explainable.
36
- - Plenty of template options to choose from.
 
37
 
38
  ### 🌱 **Grounded citations with reduced hallucinations**
39
- - Visualization of text chunking to allow human intervention.
40
- - Quick view of the key references and traceable citations to support grounded answers.
 
41
 
42
  ### 🍔 **Compatibility with heterogeneous data sources**
43
- - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
 
44
 
45
  ### 🛀 **Automated and effortless RAG workflow**
46
- - Streamlined RAG orchestration catered to both personal and large businesses.
47
- - Configurable LLMs as well as embedding models.
48
- - Multiple recall paired with fused re-ranking.
49
- - Intuitive APIs for seamless integration with business.
 
50
 
51
  ## 🔎 System Architecture
52
 
@@ -65,11 +69,11 @@
65
 
66
  ### 🚀 Start up the server
67
 
68
- 1. Ensure `vm.max_map_count` > 65535:
69
 
70
  > To check the value of `vm.max_map_count`:
71
  >
72
- > ```bash
73
  > $ sysctl vm.max_map_count
74
  > ```
75
  >
@@ -92,7 +96,7 @@
92
  $ git clone https://github.com/infiniflow/ragflow.git
93
  ```
94
 
95
- 3. Build the pre-built Docker images and start up the server:
96
 
97
  ```bash
98
  $ cd ragflow/docker
@@ -102,31 +106,33 @@
102
  > The core image is about 15 GB in size and may take a while to load.
103
 
104
  4. Check the server status after having the server up and running:
 
105
  ```bash
106
  $ docker logs -f ragflow-server
107
  ```
108
- *The following output confirms a successful launch of the system:*
 
109
 
110
  ```bash
111
- ____ ______ __
112
  / __ \ ____ _ ____ _ / ____// /____ _ __
113
  / /_/ // __ `// __ `// /_ / // __ \| | /| / /
114
- / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
115
- /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
116
- /____/
117
-
118
  * Running on all addresses (0.0.0.0)
119
  * Running on http://127.0.0.1:9380
120
  * Running on http://172.22.0.5:9380
121
  INFO:werkzeug:Press CTRL+C to quit
122
- ```
123
 
124
  5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow.
125
  6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
 
126
  > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
127
-
128
- *The show is now on!*
129
 
 
130
 
131
  ## 🔧 Configurations
132
 
@@ -136,14 +142,14 @@ When it comes to system configurations, you will need to manage the following fi
136
  - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
137
  - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
138
 
139
- You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.
140
 
141
  > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.
142
 
143
  To update the default serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.
144
 
145
  > Updates to all system configurations require a system reboot to take effect:
146
- >
147
  > ```bash
148
  > $ docker-compose up -d
149
  > ```
@@ -171,4 +177,4 @@ See the [RAGFlow Roadmap 2024](https://github.com/infiniflow/ragflow/issues/162)
171
 
172
  ## 🙌 Contributing
173
 
174
- RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first.
 
1
  <div align="center">
2
  <a href="https://demo.ragflow.io/">
3
+ <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
4
  </a>
5
  </div>
6
 
 
7
  <p align="center">
8
  <a href="./README.md">English</a> |
9
  <a href="./README_zh.md">简体中文</a>
 
25
  [RAGFlow](http://demo.ragflow.io) is an open-source, Retrieval-Augmented Generation engine built on large language models (LLM), deep document understanding, and multiple recall. It offers a streamlined RAG workflow for businesses of any scale, providing truthful responses with solid citations through a generative AI knowledge management platform.
26
 
27
  ## 🌟 Key Features
28
+
29
  ### 🍭 **"Quality in, quality out"**
30
+
31
+ - Deep document understanding-based knowledge extraction from unstructured data with complicated formats.
32
+ - Finds "needle in a data haystack" of literally unlimited tokens.
33
 
34
  ### 🍱 **Template-based chunking**
35
+
36
+ - Intelligent and explainable.
37
+ - Plenty of template options to choose from.
38
 
39
  ### 🌱 **Grounded citations with reduced hallucinations**
40
+
41
+ - Visualization of text chunking to allow human intervention.
42
+ - Quick view of the key references and traceable citations to support grounded answers.
43
 
44
  ### 🍔 **Compatibility with heterogeneous data sources**
45
+
46
+ - Supports Word, slides, excel, txt, images, scanned copies, structured data, web pages, and more.
47
 
48
  ### 🛀 **Automated and effortless RAG workflow**
49
+
50
+ - Streamlined RAG orchestration catered to both personal and large businesses.
51
+ - Configurable LLMs as well as embedding models.
52
+ - Multiple recall paired with fused re-ranking.
53
+ - Intuitive APIs for seamless integration with business.
54
 
55
  ## 🔎 System Architecture
56
 
 
69
 
70
  ### 🚀 Start up the server
71
 
72
+ 1. Ensure `vm.max_map_count` > 65535:
73
 
74
  > To check the value of `vm.max_map_count`:
75
  >
76
+ > ```bash
77
  > $ sysctl vm.max_map_count
78
  > ```
79
  >
 
96
  $ git clone https://github.com/infiniflow/ragflow.git
97
  ```
98
 
99
+ 3. Build the pre-built Docker images and start up the server:
100
 
101
  ```bash
102
  $ cd ragflow/docker
 
106
  > The core image is about 15 GB in size and may take a while to load.
107
 
108
  4. Check the server status after having the server up and running:
109
+
110
  ```bash
111
  $ docker logs -f ragflow-server
112
  ```
113
+
114
+ _The following output confirms a successful launch of the system:_
115
 
116
  ```bash
117
+ ____ ______ __
118
  / __ \ ____ _ ____ _ / ____// /____ _ __
119
  / /_/ // __ `// __ `// /_ / // __ \| | /| / /
120
+ / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
121
+ /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
122
+ /____/
123
+
124
  * Running on all addresses (0.0.0.0)
125
  * Running on http://127.0.0.1:9380
126
  * Running on http://172.22.0.5:9380
127
  INFO:werkzeug:Press CTRL+C to quit
128
+ ```
129
 
130
  5. In your web browser, enter the IP address of your server as prompted and log in to RAGFlow.
131
  6. In [service_conf.yaml](./docker/service_conf.yaml), select the desired LLM factory in `user_default_llm` and update the `API_KEY` field with the corresponding API key.
132
+
133
  > See [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md) for more information.
 
 
134
 
135
+ _The show is now on!_
136
 
137
  ## 🔧 Configurations
138
 
 
142
  - [service_conf.yaml](./docker/service_conf.yaml): Configures the back-end services.
143
  - [docker-compose.yml](./docker/docker-compose.yml): The system relies on [docker-compose.yml](./docker/docker-compose.yml) to start up.
144
 
145
+ You must ensure that changes to the [.env](./docker/.env) file are in line with what are in the [service_conf.yaml](./docker/service_conf.yaml) file.
146
 
147
  > The [./docker/README](./docker/README.md) file provides a detailed description of the environment settings and service configurations, and you are REQUIRED to ensure that all environment settings listed in the [./docker/README](./docker/README.md) file are aligned with the corresponding configurations in the [service_conf.yaml](./docker/service_conf.yaml) file.
148
 
149
  To update the default serving port (80), go to [docker-compose.yml](./docker/docker-compose.yml) and change `80:80` to `<YOUR_SERVING_PORT>:80`.
150
 
151
  > Updates to all system configurations require a system reboot to take effect:
152
+ >
153
  > ```bash
154
  > $ docker-compose up -d
155
  > ```
 
177
 
178
  ## 🙌 Contributing
179
 
180
+ RAGFlow flourishes via open-source collaboration. In this spirit, we embrace diverse contributions from the community. If you would like to be a part, review our [Contribution Guidelines](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md) first.
README_zh.md CHANGED
@@ -1,10 +1,9 @@
1
  <div align="center">
2
  <a href="https://demo.ragflow.io/">
3
- <img src="https://github.com/infiniflow/ragflow/assets/12318111/f034fb27-b3bf-401b-b213-e1dfa7448d2a" width="320" alt="ragflow logo">
4
  </a>
5
  </div>
6
 
7
-
8
  <p align="center">
9
  <a href="./README.md">English</a> |
10
  <a href="./README_zh.md">简体中文</a>
@@ -26,27 +25,32 @@
26
  [RAGFlow](http://demo.ragflow.io) 是一款基于大型语言模型(LLM)以及深度文档理解构建的开源检索增强型生成引擎(Retrieval-Augmented Generation Engine)。RAGFlow 可以为各种规模的企业提供一套精简的 RAG 工作流程,通过生成式 AI (Generative AI)知识管理平台提供可靠的问答以及有理有据的引用。
27
 
28
  ## 🌟 主要功能
29
-
30
  ### 🍭 **"Quality in, quality out"**
31
- - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。
32
- - 真正在无限上下文(token)的场景下快速完成大海捞针测试。
 
33
 
34
  ### 🍱 **基于模板的文本切片**
35
- - 不仅仅是智能,更重要的是可控可解释。
36
- - 多种文本模板可供选择
 
37
 
38
  ### 🌱 **有理有据、最大程度降低幻觉(hallucination)**
39
- - 文本切片过程可视化,支持手动调整。
40
- - 有理有据:答案提供关键引用的快照并支持追根溯源。
 
41
 
42
  ### 🍔 **兼容各类异构数据源**
43
- - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。
 
44
 
45
  ### 🛀 **全程无忧、自动化的 RAG 工作流**
46
- - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。
47
- - 大语言模型 LLM 以及向量模型均支持配置。
48
- - 基于多路召回、融合重排序。
49
- - 提供易用的 API,可以轻松集成到各类企业系统。
 
50
 
51
  ## 🔎 系统架构
52
 
@@ -69,7 +73,7 @@
69
 
70
  > 如需确认 `vm.max_map_count` 的大小:
71
  >
72
- > ```bash
73
  > $ sysctl vm.max_map_count
74
  > ```
75
  >
@@ -102,32 +106,38 @@
102
  > 核心镜像文件大约 15 GB,可能需要一定时间拉取。请耐心等待。
103
 
104
  4. 服务器启动成功后再次确认服务器状态:
 
105
  ```bash
106
  $ docker logs -f ragflow-server
107
  ```
108
- *出现以下界面提示说明服务器启动成功:*
 
109
 
110
  ```bash
111
- ____ ______ __
112
  / __ \ ____ _ ____ _ / ____// /____ _ __
113
  / /_/ // __ `// __ `// /_ / // __ \| | /| / /
114
- / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
115
- /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
116
- /____/
117
-
118
  * Running on all addresses (0.0.0.0)
119
  * Running on http://127.0.0.1:9380
120
  * Running on http://172.22.0.5:9380
121
  INFO:werkzeug:Press CTRL+C to quit
122
- ```
123
 
124
  5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
125
  > 上面这个例子中,您只需输入 http://172.22.0.5 即可:端口 9380 已通过 Docker 端口映射被设置成 80(默认的 HTTP 服务端口)。
126
- 7. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。
 
 
 
 
 
127
  > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。
128
-
129
- *好戏开始,接着奏乐接着舞!*
130
 
 
131
 
132
  ## 🔧 系统配置
133
 
@@ -137,14 +147,14 @@
137
  - [service_conf.yaml](./docker/service_conf.yaml):配置各类后台服务���
138
  - [docker-compose-CN.yml](./docker/docker-compose-CN.yml): 系统依赖该文件完成启动。
139
 
140
- 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致!
141
 
142
  > [./docker/README](./docker/README.md) 文件提供了环境变量设置和服务配置的详细信息。请**一定要**确保 [./docker/README](./docker/README.md) 文件当中列出来的环境变量的值与 [service_conf.yaml](./docker/service_conf.yaml) 文件当中的系统配置保持一致。
143
 
144
  如需更新默认的 HTTP 服务端口(80), 可以在 [docker-compose-CN.yml](./docker/docker-compose-CN.yml) 文件中将配置 `80:80` 改为 `<YOUR_SERVING_PORT>:80`。
145
 
146
  > 所有系统配置都需要通过系统重启生效:
147
- >
148
  > ```bash
149
  > $ docker compose up -f docker-compose-CN.yml -d
150
  > ```
@@ -172,4 +182,4 @@ $ docker compose up -d
172
 
173
  ## 🙌 贡献指南
174
 
175
- RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。
 
1
  <div align="center">
2
  <a href="https://demo.ragflow.io/">
3
+ <img src="web/src/assets/logo-with-text.png" width="350" alt="ragflow logo">
4
  </a>
5
  </div>
6
 
 
7
  <p align="center">
8
  <a href="./README.md">English</a> |
9
  <a href="./README_zh.md">简体中文</a>
 
25
  [RAGFlow](http://demo.ragflow.io) 是一款基于大型语言模型(LLM)以及深度文档理解构建的开源检索增强型生成引擎(Retrieval-Augmented Generation Engine)。RAGFlow 可以为各种规模的企业提供一套精简的 RAG 工作流程,通过生成式 AI (Generative AI)知识管理平台提供可靠的问答以及有理有据的引用。
26
 
27
  ## 🌟 主要功能
28
+
29
  ### 🍭 **"Quality in, quality out"**
30
+
31
+ - 基于深度文档理解,能够从各类复杂格式的非结构化数据中提取真知灼见。
32
+ - 真正在无限上下文(token)的场景下快速完成大海捞针测试。
33
 
34
  ### 🍱 **基于模板的文本切片**
35
+
36
+ - 不仅仅是智能,更重要的是可控可解释。
37
+ - 多种文本模板可供选择
38
 
39
  ### 🌱 **有理有据、最大程度降低幻觉(hallucination)**
40
+
41
+ - 文本切片过程可视化,支持手动调整。
42
+ - 有理有据:答案提供关键引用的快照并支持追根溯源。
43
 
44
  ### 🍔 **兼容各类异构数据源**
45
+
46
+ - 支持丰富的文件类型,包括 Word 文档、PPT、excel 表格、txt 文件、图片、PDF、影印件、复印件、结构化数据, 网页等。
47
 
48
  ### 🛀 **全程无忧、自动化的 RAG 工作流**
49
+
50
+ - 全面优化的 RAG 工作流可以支持从个人应用乃至超大型企业的各类生态系统。
51
+ - 大语言模型 LLM 以及向量模型均支持配置。
52
+ - 基于多路召回、融合重排序。
53
+ - 提供易用的 API,可以轻松集成到各类企业系统。
54
 
55
  ## 🔎 系统架构
56
 
 
73
 
74
  > 如需确认 `vm.max_map_count` 的大小:
75
  >
76
+ > ```bash
77
  > $ sysctl vm.max_map_count
78
  > ```
79
  >
 
106
  > 核心镜像文件大约 15 GB,可能需要一定时间拉取。请耐心等待。
107
 
108
  4. 服务器启动成功后再次确认服务器状态:
109
+
110
  ```bash
111
  $ docker logs -f ragflow-server
112
  ```
113
+
114
+ _出现以下界面提示说明服务器启动成功:_
115
 
116
  ```bash
117
+ ____ ______ __
118
  / __ \ ____ _ ____ _ / ____// /____ _ __
119
  / /_/ // __ `// __ `// /_ / // __ \| | /| / /
120
+ / _, _// /_/ // /_/ // __/ / // /_/ /| |/ |/ /
121
+ /_/ |_| \__,_/ \__, //_/ /_/ \____/ |__/|__/
122
+ /____/
123
+
124
  * Running on all addresses (0.0.0.0)
125
  * Running on http://127.0.0.1:9380
126
  * Running on http://172.22.0.5:9380
127
  INFO:werkzeug:Press CTRL+C to quit
128
+ ```
129
 
130
  5. 根据刚才的界面提示在你的浏览器中输入你的服务器对应的 IP 地址并登录 RAGFlow。
131
  > 上面这个例子中,您只需输入 http://172.22.0.5 即可:端口 9380 已通过 Docker 端口映射被设置成 80(默认的 HTTP 服务端口)。
132
+ 6. 在 [service_conf.yaml](./docker/service_conf.yaml) 文件的 `user_default_llm` 栏配置 LLM factory,并在 `API_KEY` 栏填写和你选择的大模型相对应的 API key。
133
+
134
+ > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。
135
+
136
+ _好戏开始,接着奏乐接着舞!_
137
+
138
  > 详见 [./docs/llm_api_key_setup.md](./docs/llm_api_key_setup.md)。
 
 
139
 
140
+ _好戏开始,接着奏乐接着舞!_
141
 
142
  ## 🔧 系统配置
143
 
 
147
  - [service_conf.yaml](./docker/service_conf.yaml):配置各类后台服务���
148
  - [docker-compose-CN.yml](./docker/docker-compose-CN.yml): 系统依赖该文件完成启动。
149
 
150
+ 请务必确保 [.env](./docker/.env) 文件中的变量设置与 [service_conf.yaml](./docker/service_conf.yaml) 文件中的配置保持一致!
151
 
152
  > [./docker/README](./docker/README.md) 文件提供了环境变量设置和服务配置的详细信息。请**一定要**确保 [./docker/README](./docker/README.md) 文件当中列出来的环境变量的值与 [service_conf.yaml](./docker/service_conf.yaml) 文件当中的系统配置保持一致。
153
 
154
  如需更新默认的 HTTP 服务端口(80), 可以在 [docker-compose-CN.yml](./docker/docker-compose-CN.yml) 文件中将配置 `80:80` 改为 `<YOUR_SERVING_PORT>:80`。
155
 
156
  > 所有系统配置都需要通过系统重启生效:
157
+ >
158
  > ```bash
159
  > $ docker compose up -f docker-compose-CN.yml -d
160
  > ```
 
182
 
183
  ## 🙌 贡献指南
184
 
185
+ RAGFlow 只有通过开源协作才能蓬勃发展。秉持这一精神,我们欢迎来自社区的各种贡献。如果您有意参与其中,请查阅我们的[贡献者指南](https://github.com/infiniflow/ragflow/blob/main/CONTRIBUTING.md)。
web/src/assets/logo-with-text.png ADDED
web/src/layouts/components/header/index.tsx CHANGED
@@ -55,7 +55,7 @@ const RagHeader = () => {
55
  >
56
  <Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}>
57
  <Logo className={styles.appIcon}></Logo>
58
- <span className={styles.appName}>RagFlow</span>
59
  </Space>
60
  <Space size={[0, 8]} wrap>
61
  <Radio.Group
 
55
  >
56
  <Space size={12} onClick={handleLogoClick} className={styles.logoWrapper}>
57
  <Logo className={styles.appIcon}></Logo>
58
+ <span className={styles.appName}>RAGFlow</span>
59
  </Space>
60
  <Space size={[0, 8]} wrap>
61
  <Radio.Group
web/src/layouts/components/right-toolbar/index.tsx CHANGED
@@ -1,6 +1,4 @@
1
- import { ReactComponent as MoonIcon } from '@/assets/svg/moon.svg';
2
- import { ReactComponent as TranslationIcon } from '@/assets/svg/translation.svg';
3
- import { BellOutlined, GithubOutlined } from '@ant-design/icons';
4
  import { Space } from 'antd';
5
  import React from 'react';
6
  import User from '../user';
@@ -21,15 +19,12 @@ const RightToolBar = () => {
21
  <Circle>
22
  <GithubOutlined onClick={handleGithubCLick} />
23
  </Circle>
24
- <Circle>
25
  <TranslationIcon />
26
  </Circle>
27
- <Circle>
28
- <BellOutlined />
29
- </Circle>
30
  <Circle>
31
  <MoonIcon />
32
- </Circle>
33
  <User></User>
34
  </Space>
35
  </div>
 
1
+ import { GithubOutlined } from '@ant-design/icons';
 
 
2
  import { Space } from 'antd';
3
  import React from 'react';
4
  import User from '../user';
 
19
  <Circle>
20
  <GithubOutlined onClick={handleGithubCLick} />
21
  </Circle>
22
+ {/* <Circle>
23
  <TranslationIcon />
24
  </Circle>
 
 
 
25
  <Circle>
26
  <MoonIcon />
27
+ </Circle> */}
28
  <User></User>
29
  </Space>
30
  </div>
web/src/pages/add-knowledge/components/knowledge-setting/configuration.tsx CHANGED
@@ -62,7 +62,7 @@ const ConfigurationForm = ({ form }: { form: FormInstance }) => {
62
  <Form.Item
63
  label="Language"
64
  name="language"
65
- initialValue={'Chinese'}
66
  rules={[{ required: true, message: 'Please input your language!' }]}
67
  >
68
  <Select placeholder="select your language">
 
62
  <Form.Item
63
  label="Language"
64
  name="language"
65
+ initialValue={'English'}
66
  rules={[{ required: true, message: 'Please input your language!' }]}
67
  >
68
  <Select placeholder="select your language">
web/src/pages/add-knowledge/components/knowledge-setting/utils.ts CHANGED
@@ -81,7 +81,7 @@ export const TextMap = {
81
  The résumé comes in a variety of formats, just like a person’s personality, but we often have to organize them into structured data that makes it easy to search.
82
  </p><p>
83
  Instead of chunking the résumé, we parse the résumé into structured data. As a HR, you can dump all the résumé you have,
84
- the you can list all the candidates that match the qualifications just by talk with <i>'RagFlow'</i>.
85
  </p>
86
  `,
87
  },
 
81
  The résumé comes in a variety of formats, just like a person’s personality, but we often have to organize them into structured data that makes it easy to search.
82
  </p><p>
83
  Instead of chunking the résumé, we parse the résumé into structured data. As a HR, you can dump all the résumé you have,
84
+ the you can list all the candidates that match the qualifications just by talk with <i>'RAGFlow'</i>.
85
  </p>
86
  `,
87
  },
web/src/pages/user-setting/setting-profile/index.tsx CHANGED
@@ -8,7 +8,7 @@ import {
8
  getUploadFileListFromBase64,
9
  normFile,
10
  } from '@/utils/fileUtil';
11
- import { PlusOutlined, QuestionCircleOutlined } from '@ant-design/icons';
12
  import {
13
  Button,
14
  Divider,
@@ -17,7 +17,6 @@ import {
17
  Select,
18
  Space,
19
  Spin,
20
- Tooltip,
21
  Upload,
22
  UploadFile,
23
  } from 'antd';
@@ -108,9 +107,7 @@ const UserSettingProfile = () => {
108
  <Form.Item<FieldType>
109
  label={
110
  <div>
111
- <Space>
112
- Your photo
113
- </Space>
114
  <div>This will be displayed on your profile.</div>
115
  </div>
116
  }
@@ -177,8 +174,7 @@ const UserSettingProfile = () => {
177
  <Input disabled />
178
  </Form.Item>
179
  <p className={parentStyles.itemDescription}>
180
- Once registered, an account cannot be changed and can only be
181
- cancelled.
182
  </p>
183
  </Form.Item>
184
  <Form.Item
 
8
  getUploadFileListFromBase64,
9
  normFile,
10
  } from '@/utils/fileUtil';
11
+ import { PlusOutlined } from '@ant-design/icons';
12
  import {
13
  Button,
14
  Divider,
 
17
  Select,
18
  Space,
19
  Spin,
 
20
  Upload,
21
  UploadFile,
22
  } from 'antd';
 
107
  <Form.Item<FieldType>
108
  label={
109
  <div>
110
+ <Space>Your photo</Space>
 
 
111
  <div>This will be displayed on your profile.</div>
112
  </div>
113
  }
 
174
  <Input disabled />
175
  </Form.Item>
176
  <p className={parentStyles.itemDescription}>
177
+ Once registered, E-mail cannot be changed.
 
178
  </p>
179
  </Form.Item>
180
  <Form.Item