Kevin Hu
commited on
Commit
路
9c8f077
1
Parent(s):
b4e6025
Fix raptor issue (#3737)
Browse files### What problem does this PR solve?
#3732
### Type of change
- [x] Bug Fix (non-breaking change which fixes an issue)
- rag/raptor.py +17 -13
- rag/svr/task_executor.py +1 -1
rag/raptor.py
CHANGED
@@ -33,7 +33,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
33 |
self._prompt = prompt
|
34 |
self._max_token = max_token
|
35 |
|
36 |
-
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state:int):
|
37 |
max_clusters = min(self._max_cluster, len(embeddings))
|
38 |
n_clusters = np.arange(1, max_clusters)
|
39 |
bics = []
|
@@ -44,7 +44,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
44 |
optimal_clusters = n_clusters[np.argmin(bics)]
|
45 |
return optimal_clusters
|
46 |
|
47 |
-
def __call__(self, chunks
|
48 |
layers = [(0, len(chunks))]
|
49 |
start, end = 0, len(chunks)
|
50 |
if len(chunks) <= 1: return
|
@@ -54,13 +54,15 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
54 |
nonlocal chunks
|
55 |
try:
|
56 |
texts = [chunks[i][0] for i in ck_idx]
|
57 |
-
len_per_chunk = int((self._llm_model.max_length - self._max_token)/len(texts))
|
58 |
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
|
59 |
cnt = self._llm_model.chat("You're a helpful assistant.",
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
64 |
logging.debug(f"SUM: {cnt}")
|
65 |
embds, _ = self._embd_model.encode([cnt])
|
66 |
with lock:
|
@@ -74,10 +76,10 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
74 |
while end - start > 1:
|
75 |
embeddings = [embd for _, embd in chunks[start: end]]
|
76 |
if len(embeddings) == 2:
|
77 |
-
summarize([start, start+1], Lock())
|
78 |
if callback:
|
79 |
-
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
80 |
-
labels.extend([0,0])
|
81 |
layers.append((end, len(chunks)))
|
82 |
start = end
|
83 |
end = len(chunks)
|
@@ -85,7 +87,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
85 |
|
86 |
n_neighbors = int((len(embeddings) - 1) ** 0.8)
|
87 |
reduced_embeddings = umap.UMAP(
|
88 |
-
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings)-2), metric="cosine"
|
89 |
).fit_transform(embeddings)
|
90 |
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
|
91 |
if n_clusters == 1:
|
@@ -100,7 +102,7 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
100 |
with ThreadPoolExecutor(max_workers=12) as executor:
|
101 |
threads = []
|
102 |
for c in range(n_clusters):
|
103 |
-
ck_idx = [i+start for i in range(len(lbls)) if lbls[i] == c]
|
104 |
threads.append(executor.submit(summarize, ck_idx, lock))
|
105 |
wait(threads, return_when=ALL_COMPLETED)
|
106 |
logging.debug(str([t.result() for t in threads]))
|
@@ -109,7 +111,9 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
|
109 |
labels.extend(lbls)
|
110 |
layers.append((end, len(chunks)))
|
111 |
if callback:
|
112 |
-
callback(msg="Cluster one layer: {} -> {}".format(end-start, len(chunks)-end))
|
113 |
start = end
|
114 |
end = len(chunks)
|
115 |
|
|
|
|
|
|
33 |
self._prompt = prompt
|
34 |
self._max_token = max_token
|
35 |
|
36 |
+
def _get_optimal_clusters(self, embeddings: np.ndarray, random_state: int):
|
37 |
max_clusters = min(self._max_cluster, len(embeddings))
|
38 |
n_clusters = np.arange(1, max_clusters)
|
39 |
bics = []
|
|
|
44 |
optimal_clusters = n_clusters[np.argmin(bics)]
|
45 |
return optimal_clusters
|
46 |
|
47 |
+
def __call__(self, chunks, random_state, callback=None):
|
48 |
layers = [(0, len(chunks))]
|
49 |
start, end = 0, len(chunks)
|
50 |
if len(chunks) <= 1: return
|
|
|
54 |
nonlocal chunks
|
55 |
try:
|
56 |
texts = [chunks[i][0] for i in ck_idx]
|
57 |
+
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
|
58 |
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
|
59 |
cnt = self._llm_model.chat("You're a helpful assistant.",
|
60 |
+
[{"role": "user",
|
61 |
+
"content": self._prompt.format(cluster_content=cluster_content)}],
|
62 |
+
{"temperature": 0.3, "max_tokens": self._max_token}
|
63 |
+
)
|
64 |
+
cnt = re.sub("(路路路路路路\n鐢变簬闀垮害鐨勫師鍥狅紝鍥炵瓟琚埅鏂簡锛岃缁х画鍚楋紵|For the content length reason, it stopped, continue?)", "",
|
65 |
+
cnt)
|
66 |
logging.debug(f"SUM: {cnt}")
|
67 |
embds, _ = self._embd_model.encode([cnt])
|
68 |
with lock:
|
|
|
76 |
while end - start > 1:
|
77 |
embeddings = [embd for _, embd in chunks[start: end]]
|
78 |
if len(embeddings) == 2:
|
79 |
+
summarize([start, start + 1], Lock())
|
80 |
if callback:
|
81 |
+
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
82 |
+
labels.extend([0, 0])
|
83 |
layers.append((end, len(chunks)))
|
84 |
start = end
|
85 |
end = len(chunks)
|
|
|
87 |
|
88 |
n_neighbors = int((len(embeddings) - 1) ** 0.8)
|
89 |
reduced_embeddings = umap.UMAP(
|
90 |
+
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
|
91 |
).fit_transform(embeddings)
|
92 |
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
|
93 |
if n_clusters == 1:
|
|
|
102 |
with ThreadPoolExecutor(max_workers=12) as executor:
|
103 |
threads = []
|
104 |
for c in range(n_clusters):
|
105 |
+
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
|
106 |
threads.append(executor.submit(summarize, ck_idx, lock))
|
107 |
wait(threads, return_when=ALL_COMPLETED)
|
108 |
logging.debug(str([t.result() for t in threads]))
|
|
|
111 |
labels.extend(lbls)
|
112 |
layers.append((end, len(chunks)))
|
113 |
if callback:
|
114 |
+
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
115 |
start = end
|
116 |
end = len(chunks)
|
117 |
|
118 |
+
return chunks
|
119 |
+
|
rag/svr/task_executor.py
CHANGED
@@ -344,7 +344,7 @@ def run_raptor(row, chat_mdl, embd_mdl, callback=None):
|
|
344 |
row["parser_config"]["raptor"]["threshold"]
|
345 |
)
|
346 |
original_length = len(chunks)
|
347 |
-
raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
348 |
doc = {
|
349 |
"doc_id": row["doc_id"],
|
350 |
"kb_id": [str(row["kb_id"])],
|
|
|
344 |
row["parser_config"]["raptor"]["threshold"]
|
345 |
)
|
346 |
original_length = len(chunks)
|
347 |
+
chunks = raptor(chunks, row["parser_config"]["raptor"]["random_seed"], callback)
|
348 |
doc = {
|
349 |
"doc_id": row["doc_id"],
|
350 |
"kb_id": [str(row["kb_id"])],
|