lidp commited on
Commit
9c1ae34
·
1 Parent(s): 2083caf

Add RAGFlow benchmark (#2387)

Browse files

### What problem does this PR solve?

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

Files changed (1) hide show
  1. rag/benchmark.py +166 -26
rag/benchmark.py CHANGED
@@ -13,10 +13,10 @@
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
  #
16
-
17
- import argparse
18
  from collections import defaultdict
19
- from api.db import FileType, TaskStatus, ParserType, LLMType
20
  from api.db.services.llm_service import LLMBundle
21
  from api.db.services.knowledgebase_service import KnowledgebaseService
22
  from api.settings import retrievaler
@@ -24,25 +24,27 @@ from api.utils import get_uuid
24
  from rag.nlp import tokenize, search
25
  from rag.utils.es_conn import ELASTICSEARCH
26
  from ranx import evaluate
 
 
27
 
28
 
29
- class benchmark_ndcg10:
30
  def __init__(self, kb_id):
31
  e, kb = KnowledgebaseService.get_by_id(kb_id)
32
  self.similarity_threshold = kb.similarity_threshold
33
  self.vector_similarity_weight = kb.vector_similarity_weight
34
  self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
35
 
36
- def _get_benchmarks(self, query, count=16):
37
  req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
38
- sres = retrievaler.search(req, search.index_name("benchmark"), self.embd_mdl)
39
  return sres
40
 
41
- def _get_retrieval(self, qrels):
42
  run = defaultdict(dict)
43
  query_list = list(qrels.keys())
44
  for query in query_list:
45
- sres = self._get_benchmarks(query)
46
  sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
47
  self.vector_similarity_weight)
48
  for index, id in enumerate(sres.ids):
@@ -61,34 +63,172 @@ class benchmark_ndcg10:
61
  d["q_%d_vec" % len(v)] = v
62
  return docs
63
 
64
- def __call__(self, file_path):
65
  qrels = defaultdict(dict)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
 
 
 
67
  docs = []
68
- with open(file_path) as f:
69
- for line in f:
70
- query, text, rel = line.strip('\n').split()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
  d = {
72
  "id": get_uuid()
73
  }
74
- tokenize(d, text)
75
  docs.append(d)
 
 
76
  if len(docs) >= 32:
77
- ELASTICSEARCH.bulk(docs, search.index_name("benchmark"))
 
78
  docs = []
79
- qrels[query][d["id"]] = float(rel)
80
- docs = self.embedding(docs)
81
- ELASTICSEARCH.bulk(docs, search.index_name("benchmark"))
82
 
83
- run = self._get_retrieval(qrels)
84
- return evaluate(qrels, run, "ndcg@10")
85
 
 
86
 
87
- if __name__ == '__main__':
88
- parser = argparse.ArgumentParser()
89
- parser.add_argument('-f', '--filepath', default='', help="file path", action='store', required=True)
90
- parser.add_argument('-k', '--kb_id', default='', help="kb_id", action='store', required=True)
91
- args = parser.parse_args()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- ex = benchmark_ndcg10(args.kb_id)
94
- print(ex(args.filepath))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
  #
16
+ import json
17
+ import os
18
  from collections import defaultdict
19
+ from api.db import LLMType
20
  from api.db.services.llm_service import LLMBundle
21
  from api.db.services.knowledgebase_service import KnowledgebaseService
22
  from api.settings import retrievaler
 
24
  from rag.nlp import tokenize, search
25
  from rag.utils.es_conn import ELASTICSEARCH
26
  from ranx import evaluate
27
+ import pandas as pd
28
+ from tqdm import tqdm
29
 
30
 
31
+ class Benchmark:
32
  def __init__(self, kb_id):
33
  e, kb = KnowledgebaseService.get_by_id(kb_id)
34
  self.similarity_threshold = kb.similarity_threshold
35
  self.vector_similarity_weight = kb.vector_similarity_weight
36
  self.embd_mdl = LLMBundle(kb.tenant_id, LLMType.EMBEDDING, llm_name=kb.embd_id, lang=kb.language)
37
 
38
+ def _get_benchmarks(self, query, dataset_idxnm, count=16):
39
  req = {"question": query, "size": count, "vector": True, "similarity": self.similarity_threshold}
40
+ sres = retrievaler.search(req, search.index_name(dataset_idxnm), self.embd_mdl)
41
  return sres
42
 
43
+ def _get_retrieval(self, qrels, dataset_idxnm):
44
  run = defaultdict(dict)
45
  query_list = list(qrels.keys())
46
  for query in query_list:
47
+ sres = self._get_benchmarks(query, dataset_idxnm)
48
  sim, _, _ = retrievaler.rerank(sres, query, 1 - self.vector_similarity_weight,
49
  self.vector_similarity_weight)
50
  for index, id in enumerate(sres.ids):
 
63
  d["q_%d_vec" % len(v)] = v
64
  return docs
65
 
66
+ def ms_marco_index(self, file_path, index_name):
67
  qrels = defaultdict(dict)
68
+ texts = defaultdict(dict)
69
+ docs = []
70
+ filelist = os.listdir(file_path)
71
+ for dir in filelist:
72
+ data = pd.read_parquet(os.path.join(file_path, dir))
73
+ for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
74
+
75
+ query = data.iloc[i]['query']
76
+ for rel, text in zip(data.iloc[i]['passages']['is_selected'], data.iloc[i]['passages']['passage_text']):
77
+ d = {
78
+ "id": get_uuid()
79
+ }
80
+ tokenize(d, text, "english")
81
+ docs.append(d)
82
+ texts[d["id"]] = text
83
+ qrels[query][d["id"]] = int(rel)
84
+ if len(docs) >= 32:
85
+ docs = self.embedding(docs)
86
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
87
+ docs = []
88
+
89
+ docs = self.embedding(docs)
90
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
91
+ return qrels, texts
92
 
93
+ def trivia_qa_index(self, file_path, index_name):
94
+ qrels = defaultdict(dict)
95
+ texts = defaultdict(dict)
96
  docs = []
97
+ filelist = os.listdir(file_path)
98
+ for dir in filelist:
99
+ data = pd.read_parquet(os.path.join(file_path, dir))
100
+ for i in tqdm(range(len(data)), colour="green", desc="Indexing:" + dir):
101
+ query = data.iloc[i]['question']
102
+ for rel, text in zip(data.iloc[i]["search_results"]['rank'],
103
+ data.iloc[i]["search_results"]['search_context']):
104
+ d = {
105
+ "id": get_uuid()
106
+ }
107
+ tokenize(d, text, "english")
108
+ docs.append(d)
109
+ texts[d["id"]] = text
110
+ qrels[query][d["id"]] = int(rel)
111
+ if len(docs) >= 32:
112
+ docs = self.embedding(docs)
113
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
114
+ docs = []
115
+
116
+ docs = self.embedding(docs)
117
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
118
+ return qrels, texts
119
+
120
+ def miracl_index(self, file_path, corpus_path, index_name):
121
+
122
+ corpus_total = {}
123
+ for corpus_file in os.listdir(corpus_path):
124
+ tmp_data = pd.read_json(os.path.join(corpus_path, corpus_file), lines=True)
125
+ for index, i in tmp_data.iterrows():
126
+ corpus_total[i['docid']] = i['text']
127
+
128
+ topics_total = {}
129
+ for topics_file in os.listdir(os.path.join(file_path, 'topics')):
130
+ if 'test' in topics_file:
131
+ continue
132
+ tmp_data = pd.read_csv(os.path.join(file_path, 'topics', topics_file), sep='\t', names=['qid', 'query'])
133
+ for index, i in tmp_data.iterrows():
134
+ topics_total[i['qid']] = i['query']
135
+
136
+ qrels = defaultdict(dict)
137
+ texts = defaultdict(dict)
138
+ docs = []
139
+ for qrels_file in os.listdir(os.path.join(file_path, 'qrels')):
140
+ if 'test' in qrels_file:
141
+ continue
142
+
143
+ tmp_data = pd.read_csv(os.path.join(file_path, 'qrels', qrels_file), sep='\t',
144
+ names=['qid', 'Q0', 'docid', 'relevance'])
145
+ for i in tqdm(range(len(tmp_data)), colour="green", desc="Indexing:" + qrels_file):
146
+ query = topics_total[tmp_data.iloc[i]['qid']]
147
+ text = corpus_total[tmp_data.iloc[i]['docid']]
148
+ rel = tmp_data.iloc[i]['relevance']
149
  d = {
150
  "id": get_uuid()
151
  }
152
+ tokenize(d, text, 'english')
153
  docs.append(d)
154
+ texts[d["id"]] = text
155
+ qrels[query][d["id"]] = int(rel)
156
  if len(docs) >= 32:
157
+ docs = self.embedding(docs)
158
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
159
  docs = []
 
 
 
160
 
161
+ docs = self.embedding(docs)
162
+ ELASTICSEARCH.bulk(docs, search.index_name(index_name))
163
 
164
+ return qrels, texts
165
 
166
+ def save_results(self, qrels, run, texts, dataset, file_path):
167
+ keep_result = []
168
+ run_keys = list(run.keys())
169
+ for run_i in tqdm(range(len(run_keys)), desc="Calculating ndcg@10 for single query"):
170
+ key = run_keys[run_i]
171
+ keep_result.append({'query': key, 'qrel': qrels[key], 'run': run[key],
172
+ 'ndcg@10': evaluate({key: qrels[key]}, {key: run[key]}, "ndcg@10")})
173
+ keep_result = sorted(keep_result, key=lambda kk: kk['ndcg@10'])
174
+ with open(os.path.join(file_path, dataset + 'result.md'), 'w', encoding='utf-8') as f:
175
+ f.write('## Score For Every Query\n')
176
+ for keep_result_i in keep_result:
177
+ f.write('### query: ' + keep_result_i['query'] + ' ndcg@10:' + str(keep_result_i['ndcg@10']) + '\n')
178
+ scores = [[i[0], i[1]] for i in keep_result_i['run'].items()]
179
+ scores = sorted(scores, key=lambda kk: kk[1])
180
+ for score in scores[:10]:
181
+ f.write('- text: ' + str(texts[score[0]]) + '\t qrel: ' + str(score[1]) + '\n')
182
+ print(os.path.join(file_path, dataset + '_result.md'), 'Saved!')
183
+
184
+ def __call__(self, dataset, file_path, miracl_corpus=''):
185
+ if dataset == "ms_marco_v1.1":
186
+ qrels, texts = self.ms_marco_index(file_path, "benchmark_ms_marco_v1.1")
187
+ run = self._get_retrieval(qrels, "benchmark_ms_marco_v1.1")
188
+ print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
189
+ self.save_results(qrels, run, texts, dataset, file_path)
190
+ if dataset == "trivia_qa":
191
+ qrels, texts = self.trivia_qa_index(file_path, "benchmark_trivia_qa")
192
+ run = self._get_retrieval(qrels, "benchmark_trivia_qa")
193
+ print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
194
+ self.save_results(qrels, run, texts, dataset, file_path)
195
+ if dataset == "miracl":
196
+ for lang in ['ar', 'bn', 'de', 'en', 'es', 'fa', 'fi', 'fr', 'hi', 'id', 'ja', 'ko', 'ru', 'sw', 'te', 'th',
197
+ 'yo', 'zh']:
198
+ if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang)):
199
+ print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang) + ' not found!')
200
+ continue
201
+ if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels')):
202
+ print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'qrels') + 'not found!')
203
+ continue
204
+ if not os.path.isdir(os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics')):
205
+ print('Directory: ' + os.path.join(file_path, 'miracl-v1.0-' + lang, 'topics') + 'not found!')
206
+ continue
207
+ if not os.path.isdir(os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang)):
208
+ print('Directory: ' + os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang) + ' not found!')
209
+ continue
210
+ qrels, texts = self.miracl_index(os.path.join(file_path, 'miracl-v1.0-' + lang),
211
+ os.path.join(miracl_corpus, 'miracl-corpus-v1.0-' + lang),
212
+ "benchmark_miracl_" + lang)
213
+ run = self._get_retrieval(qrels, "benchmark_miracl_" + lang)
214
+ print(dataset, evaluate(qrels, run, ["ndcg@10", "map@5", "mrr"]))
215
+ self.save_results(qrels, run, texts, dataset, file_path)
216
 
217
+
218
+ if __name__ == '__main__':
219
+ print('*****************RAGFlow Benchmark*****************')
220
+ kb_id = input('Please input kb_id:\n')
221
+ ex = Benchmark(kb_id)
222
+ dataset = input(
223
+ 'RAGFlow Benchmark Support:\n\tms_marco_v1.1:<https://huggingface.co/datasets/microsoft/ms_marco>\n\ttrivia_qa:<https://huggingface.co/datasets/mandarjoshi/trivia_qa>\n\tmiracl:<https://huggingface.co/datasets/miracl/miracl>\nPlease input dataset choice:\n')
224
+ if dataset in ['ms_marco_v1.1', 'trivia_qa']:
225
+ if dataset == "ms_marco_v1.1":
226
+ print("Notice: Please provide the ms_marco_v1.1 dataset only. ms_marco_v2.1 is not supported!")
227
+ dataset_path = input('Please input ' + dataset + ' dataset path:\n')
228
+ ex(dataset, dataset_path)
229
+ elif dataset == 'miracl':
230
+ dataset_path = input('Please input ' + dataset + ' dataset path:\n')
231
+ corpus_path = input('Please input ' + dataset + '-corpus dataset path:\n')
232
+ ex(dataset, dataset_path, miracl_corpus=corpus_path)
233
+ else:
234
+ print("Dataset: ", dataset, "not supported!")