ragflow / python /svr /parse_user_docs.py
KevinHuSh
add llm API (#19)
d0db329
raw
history blame
8.35 kB
import json, os, sys, hashlib, copy, time, random, re
from os.path import dirname, realpath
sys.path.append(dirname(realpath(__file__)) + "/../")
from util.es_conn import HuEs
from util.db_conn import Postgres
from util.minio_conn import HuMinio
from util import rmSpace, findMaxDt
from FlagEmbedding import FlagModel
from nlp import huchunk, huqie, search
from io import BytesIO
import pandas as pd
from elasticsearch_dsl import Q
from PIL import Image
from parser import (
PdfParser,
DocxParser,
ExcelParser
)
from nlp.huchunk import (
PdfChunker,
DocxChunker,
ExcelChunker,
PptChunker,
TextChunker
)
ES = HuEs("infiniflow")
BATCH_SIZE = 64
PG = Postgres("infiniflow", "docgpt")
MINIO = HuMinio("infiniflow")
PDF = PdfChunker(PdfParser())
DOC = DocxChunker(DocxParser())
EXC = ExcelChunker(ExcelParser())
PPT = PptChunker()
def chuck_doc(name, binary):
suff = os.path.split(name)[-1].lower().split(".")[-1]
if suff.find("pdf") >= 0: return PDF(binary)
if suff.find("doc") >= 0: return DOC(binary)
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff): return EXC(binary)
if suff.find("ppt") >= 0: return PPT(binary)
if os.envirement.get("PARSE_IMAGE") \
and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
name.lower()):
from llm import CvModel
txt = CvModel.describe(binary)
field = TextChunker.Fields()
field.text_chunks = [(txt, binary)]
field.table_chunks = []
return TextChunker()(binary)
def collect(comm, mod, tm):
sql = f"""
select
id as kb2doc_id,
kb_id,
did,
updated_at,
is_deleted
from kb2_doc
where
updated_at >= '{tm}'
and kb_progress = 0
and MOD(did, {comm}) = {mod}
order by updated_at asc
limit 1000
"""
kb2doc = PG.select(sql)
if len(kb2doc) == 0:return pd.DataFrame()
sql = """
select
did,
uid,
doc_name,
location,
size
from doc_info
where
did in (%s)
"""%",".join([str(i) for i in kb2doc["did"].unique()])
docs = PG.select(sql)
docs = docs.fillna("")
docs = docs.join(kb2doc.set_index("did"), on="did", how="left")
mtm = str(docs["updated_at"].max())[:19]
print("TOTAL:", len(docs), "To: ", mtm)
return docs
def set_progress(kb2doc_id, prog, msg="Processing..."):
sql = f"""
update kb2_doc set kb_progress={prog}, kb_progress_msg='{msg}'
where
id={kb2doc_id}
"""
PG.update(sql)
def build(row):
if row["size"] > 256000000:
set_progress(row["kb2doc_id"], -1, "File size exceeds( <= 256Mb )")
return []
res = ES.search(Q("term", doc_id=row["did"]))
if ES.getTotal(res) > 0:
ES.updateScriptByQuery(Q("term", doc_id=row["did"]),
scripts="""
if(!ctx._source.kb_id.contains('%s'))
ctx._source.kb_id.add('%s');
"""%(str(row["kb_id"]), str(row["kb_id"])),
idxnm = search.index_name(row["uid"])
)
set_progress(row["kb2doc_id"], 1, "Done")
return []
random.seed(time.time())
set_progress(row["kb2doc_id"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
try:
obj = chuck_doc(row["doc_name"], MINIO.get("%s-upload"%str(row["uid"]), row["location"]))
except Exception as e:
if re.search("(No such file|not found)", str(e)):
set_progress(row["kb2doc_id"], -1, "Can not find file <%s>"%row["doc_name"])
else:
set_progress(row["kb2doc_id"], -1, f"Internal system error: %s"%str(e).replace("'", ""))
return []
if not obj.text_chunks and not obj.table_chunks:
set_progress(row["kb2doc_id"], 1, "Nothing added! Mostly, file type unsupported yet.")
return []
set_progress(row["kb2doc_id"], random.randint(20, 60)/100., "Finished slicing files. Start to embedding the content.")
doc = {
"doc_id": row["did"],
"kb_id": [str(row["kb_id"])],
"docnm_kwd": os.path.split(row["location"])[-1],
"title_tks": huqie.qie(os.path.split(row["location"])[-1]),
"updated_at": str(row["updated_at"]).replace("T", " ")[:19]
}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
output_buffer = BytesIO()
docs = []
md5 = hashlib.md5()
for txt, img in obj.text_chunks:
d = copy.deepcopy(doc)
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
d["content_ltks"] = huqie.qie(txt)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
if not img:
docs.append(d)
continue
if isinstance(img, Image): img.save(output_buffer, format='JPEG')
else: output_buffer = BytesIO(img)
MINIO.put("{}-{}".format(row["uid"], row["kb_id"]), d["_id"],
output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["uid"], row["kb_id"])
docs.append(d)
for arr, img in obj.table_chunks:
for i, txt in enumerate(arr):
d = copy.deepcopy(doc)
d["content_ltks"] = huqie.qie(txt)
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
d["_id"] = md5.hexdigest()
if not img:
docs.append(d)
continue
img.save(output_buffer, format='JPEG')
MINIO.put("{}-{}".format(row["uid"], row["kb_id"]), d["_id"],
output_buffer.getvalue())
d["img_id"] = "{}-{}".format(row["uid"], row["kb_id"])
docs.append(d)
set_progress(row["kb2doc_id"], random.randint(60, 70)/100., "Continue embedding the content.")
return docs
def init_kb(row):
idxnm = search.index_name(row["uid"])
if ES.indexExist(idxnm): return
return ES.createIdx(idxnm, json.load(open("conf/mapping.json", "r")))
model = None
def embedding(docs):
global model
tts = model.encode([rmSpace(d["title_tks"]) for d in docs])
cnts = model.encode([rmSpace(d["content_ltks"]) for d in docs])
vects = 0.1 * tts + 0.9 * cnts
assert len(vects) == len(docs)
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist()
def rm_doc_from_kb(df):
if len(df) == 0:return
for _,r in df.iterrows():
ES.updateScriptByQuery(Q("term", doc_id=r["did"]),
scripts="""
if(ctx._source.kb_id.contains('%s'))
ctx._source.kb_id.remove(
ctx._source.kb_id.indexOf('%s')
);
"""%(str(r["kb_id"]),str(r["kb_id"])),
idxnm = search.index_name(r["uid"])
)
if len(df) == 0:return
sql = """
delete from kb2_doc where id in (%s)
"""%",".join([str(i) for i in df["kb2doc_id"]])
PG.update(sql)
def main(comm, mod):
global model
from llm import HuEmbedding
model = HuEmbedding()
tm_fnm = f"res/{comm}-{mod}.tm"
tm = findMaxDt(tm_fnm)
rows = collect(comm, mod, tm)
if len(rows) == 0:return
rm_doc_from_kb(rows.loc[rows.is_deleted == True])
rows = rows.loc[rows.is_deleted == False].reset_index(drop=True)
if len(rows) == 0:return
tmf = open(tm_fnm, "a+")
for _, r in rows.iterrows():
cks = build(r)
if not cks:
tmf.write(str(r["updated_at"]) + "\n")
continue
## TODO: exception handler
## set_progress(r["did"], -1, "ERROR: ")
embedding(cks)
set_progress(r["kb2doc_id"], random.randint(70, 95)/100.,
"Finished embedding! Start to build index!")
init_kb(r)
es_r = ES.bulk(cks, search.index_name(r["uid"]))
if es_r:
set_progress(r["kb2doc_id"], -1, "Index failure!")
print(es_r)
else: set_progress(r["kb2doc_id"], 1., "Done!")
tmf.write(str(r["updated_at"]) + "\n")
tmf.close()
if __name__ == "__main__":
from mpi4py import MPI
comm = MPI.COMM_WORLD
main(comm.Get_size(), comm.Get_rank())