|
|
|
""" |
|
Reference: |
|
- [LightRag](https://github.com/HKUDS/LightRAG) |
|
- [MiniRAG](https://github.com/HKUDS/MiniRAG) |
|
""" |
|
PROMPTS = {} |
|
|
|
PROMPTS["minirag_query2kwd"] = """---Role--- |
|
|
|
You are a helpful assistant tasked with identifying both answer-type and low-level keywords in the user's query. |
|
|
|
---Goal--- |
|
|
|
Given the query, list both answer-type and low-level keywords. |
|
answer_type_keywords focus on the type of the answer to the certain query, while low-level keywords focus on specific entities, details, or concrete terms. |
|
The answer_type_keywords must be selected from Answer type pool. |
|
This pool is in the form of a dictionary, where the key represents the Type you should choose from and the value represents the example samples. |
|
|
|
---Instructions--- |
|
|
|
- Output the keywords in JSON format. |
|
- The JSON should have three keys: |
|
- "answer_type_keywords" for the types of the answer. In this list, the types with the highest likelihood should be placed at the forefront. No more than 3. |
|
- "entities_from_query" for specific entities or details. It must be extracted from the query. |
|
###################### |
|
-Examples- |
|
###################### |
|
Example 1: |
|
|
|
Query: "How does international trade influence global economic stability?" |
|
Answer type pool: {{ |
|
'PERSONAL LIFE': ['FAMILY TIME', 'HOME MAINTENANCE'], |
|
'STRATEGY': ['MARKETING PLAN', 'BUSINESS EXPANSION'], |
|
'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'], |
|
'PERSON': ['JANE DOE', 'JOHN SMITH'], |
|
'FOOD': ['PASTA', 'SUSHI'], |
|
'EMOTION': ['HAPPINESS', 'ANGER'], |
|
'PERSONAL EXPERIENCE': ['TRAVEL ABROAD', 'STUDYING ABROAD'], |
|
'INTERACTION': ['TEAM MEETING', 'NETWORKING EVENT'], |
|
'BEVERAGE': ['COFFEE', 'TEA'], |
|
'PLAN': ['ANNUAL BUDGET', 'PROJECT TIMELINE'], |
|
'GEO': ['NEW YORK CITY', 'SOUTH AFRICA'], |
|
'GEAR': ['CAMPING TENT', 'CYCLING HELMET'], |
|
'EMOJI': ['π', 'π'], |
|
'BEHAVIOR': ['POSITIVE FEEDBACK', 'NEGATIVE CRITICISM'], |
|
'TONE': ['FORMAL', 'INFORMAL'], |
|
'LOCATION': ['DOWNTOWN', 'SUBURBS'] |
|
}} |
|
################ |
|
Output: |
|
{{ |
|
"answer_type_keywords": ["STRATEGY","PERSONAL LIFE"], |
|
"entities_from_query": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"] |
|
}} |
|
############################# |
|
Example 2: |
|
|
|
Query: "When was SpaceX's first rocket launch?" |
|
Answer type pool: {{ |
|
'DATE AND TIME': ['2023-10-10 10:00', 'THIS AFTERNOON'], |
|
'ORGANIZATION': ['GLOBAL INITIATIVES CORPORATION', 'LOCAL COMMUNITY CENTER'], |
|
'PERSONAL LIFE': ['DAILY EXERCISE ROUTINE', 'FAMILY VACATION PLANNING'], |
|
'STRATEGY': ['NEW PRODUCT LAUNCH', 'YEAR-END SALES BOOST'], |
|
'SERVICE FACILITATION': ['REMOTE IT SUPPORT', 'ON-SITE TRAINING SESSIONS'], |
|
'PERSON': ['ALEXANDER HAMILTON', 'MARIA CURIE'], |
|
'FOOD': ['GRILLED SALMON', 'VEGETARIAN BURRITO'], |
|
'EMOTION': ['EXCITEMENT', 'DISAPPOINTMENT'], |
|
'PERSONAL EXPERIENCE': ['BIRTHDAY CELEBRATION', 'FIRST MARATHON'], |
|
'INTERACTION': ['OFFICE WATER COOLER CHAT', 'ONLINE FORUM DEBATE'], |
|
'BEVERAGE': ['ICED COFFEE', 'GREEN SMOOTHIE'], |
|
'PLAN': ['WEEKLY MEETING SCHEDULE', 'MONTHLY BUDGET OVERVIEW'], |
|
'GEO': ['MOUNT EVEREST BASE CAMP', 'THE GREAT BARRIER REEF'], |
|
'GEAR': ['PROFESSIONAL CAMERA EQUIPMENT', 'OUTDOOR HIKING GEAR'], |
|
'EMOJI': ['π
', 'β°'], |
|
'BEHAVIOR': ['PUNCTUALITY', 'HONESTY'], |
|
'TONE': ['CONFIDENTIAL', 'SATIRICAL'], |
|
'LOCATION': ['CENTRAL PARK', 'DOWNTOWN LIBRARY'] |
|
}} |
|
|
|
################ |
|
Output: |
|
{{ |
|
"answer_type_keywords": ["DATE AND TIME", "ORGANIZATION", "PLAN"], |
|
"entities_from_query": ["SpaceX", "Rocket launch", "Aerospace", "Power Recovery"] |
|
|
|
}} |
|
############################# |
|
Example 3: |
|
|
|
Query: "What is the role of education in reducing poverty?" |
|
Answer type pool: {{ |
|
'PERSONAL LIFE': ['MANAGING WORK-LIFE BALANCE', 'HOME IMPROVEMENT PROJECTS'], |
|
'STRATEGY': ['MARKETING STRATEGIES FOR Q4', 'EXPANDING INTO NEW MARKETS'], |
|
'SERVICE FACILITATION': ['CUSTOMER SATISFACTION SURVEYS', 'STAFF RETENTION PROGRAMS'], |
|
'PERSON': ['ALBERT EINSTEIN', 'MARIA CALLAS'], |
|
'FOOD': ['PAN-FRIED STEAK', 'POACHED EGGS'], |
|
'EMOTION': ['OVERWHELM', 'CONTENTMENT'], |
|
'PERSONAL EXPERIENCE': ['LIVING ABROAD', 'STARTING A NEW JOB'], |
|
'INTERACTION': ['SOCIAL MEDIA ENGAGEMENT', 'PUBLIC SPEAKING'], |
|
'BEVERAGE': ['CAPPUCCINO', 'MATCHA LATTE'], |
|
'PLAN': ['ANNUAL FITNESS GOALS', 'QUARTERLY BUSINESS REVIEW'], |
|
'GEO': ['THE AMAZON RAINFOREST', 'THE GRAND CANYON'], |
|
'GEAR': ['SURFING ESSENTIALS', 'CYCLING ACCESSORIES'], |
|
'EMOJI': ['π»', 'π±'], |
|
'BEHAVIOR': ['TEAMWORK', 'LEADERSHIP'], |
|
'TONE': ['FORMAL MEETING', 'CASUAL CONVERSATION'], |
|
'LOCATION': ['URBAN CITY CENTER', 'RURAL COUNTRYSIDE'] |
|
}} |
|
|
|
################ |
|
Output: |
|
{{ |
|
"answer_type_keywords": ["STRATEGY", "PERSON"], |
|
"entities_from_query": ["School access", "Literacy rates", "Job training", "Income inequality"] |
|
}} |
|
############################# |
|
Example 4: |
|
|
|
Query: "Where is the capital of the United States?" |
|
Answer type pool: {{ |
|
'ORGANIZATION': ['GREENPEACE', 'RED CROSS'], |
|
'PERSONAL LIFE': ['DAILY WORKOUT', 'HOME COOKING'], |
|
'STRATEGY': ['FINANCIAL INVESTMENT', 'BUSINESS EXPANSION'], |
|
'SERVICE FACILITATION': ['ONLINE SUPPORT', 'CUSTOMER SERVICE TRAINING'], |
|
'PERSON': ['ALBERTA SMITH', 'BENJAMIN JONES'], |
|
'FOOD': ['PASTA CARBONARA', 'SUSHI PLATTER'], |
|
'EMOTION': ['HAPPINESS', 'SADNESS'], |
|
'PERSONAL EXPERIENCE': ['TRAVEL ADVENTURE', 'BOOK CLUB'], |
|
'INTERACTION': ['TEAM BUILDING', 'NETWORKING MEETUP'], |
|
'BEVERAGE': ['LATTE', 'GREEN TEA'], |
|
'PLAN': ['WEIGHT LOSS', 'CAREER DEVELOPMENT'], |
|
'GEO': ['PARIS', 'NEW YORK'], |
|
'GEAR': ['CAMERA', 'HEADPHONES'], |
|
'EMOJI': ['π’', 'π'], |
|
'BEHAVIOR': ['POSITIVE THINKING', 'STRESS MANAGEMENT'], |
|
'TONE': ['FRIENDLY', 'PROFESSIONAL'], |
|
'LOCATION': ['DOWNTOWN', 'SUBURBS'] |
|
}} |
|
################ |
|
Output: |
|
{{ |
|
"answer_type_keywords": ["LOCATION"], |
|
"entities_from_query": ["capital of the United States", "Washington", "New York"] |
|
}} |
|
############################# |
|
|
|
-Real Data- |
|
###################### |
|
Query: {query} |
|
Answer type pool:{TYPE_POOL} |
|
###################### |
|
Output: |
|
|
|
""" |
|
|
|
PROMPTS["keywords_extraction"] = """---Role--- |
|
|
|
You are a helpful assistant tasked with identifying both high-level and low-level keywords in the user's query. |
|
|
|
---Goal--- |
|
|
|
Given the query, list both high-level and low-level keywords. High-level keywords focus on overarching concepts or themes, while low-level keywords focus on specific entities, details, or concrete terms. |
|
|
|
---Instructions--- |
|
|
|
- Output the keywords in JSON format. |
|
- The JSON should have two keys: |
|
- "high_level_keywords" for overarching concepts or themes. |
|
- "low_level_keywords" for specific entities or details. |
|
|
|
###################### |
|
-Examples- |
|
###################### |
|
{examples} |
|
|
|
############################# |
|
-Real Data- |
|
###################### |
|
Query: {query} |
|
###################### |
|
The `Output` should be human text, not unicode characters. Keep the same language as `Query`. |
|
Output: |
|
|
|
""" |
|
|
|
PROMPTS["keywords_extraction_examples"] = [ |
|
"""Example 1: |
|
|
|
Query: "How does international trade influence global economic stability?" |
|
################ |
|
Output: |
|
{ |
|
"high_level_keywords": ["International trade", "Global economic stability", "Economic impact"], |
|
"low_level_keywords": ["Trade agreements", "Tariffs", "Currency exchange", "Imports", "Exports"] |
|
} |
|
#############################""", |
|
"""Example 2: |
|
|
|
Query: "What are the environmental consequences of deforestation on biodiversity?" |
|
################ |
|
Output: |
|
{ |
|
"high_level_keywords": ["Environmental consequences", "Deforestation", "Biodiversity loss"], |
|
"low_level_keywords": ["Species extinction", "Habitat destruction", "Carbon emissions", "Rainforest", "Ecosystem"] |
|
} |
|
#############################""", |
|
"""Example 3: |
|
|
|
Query: "What is the role of education in reducing poverty?" |
|
################ |
|
Output: |
|
{ |
|
"high_level_keywords": ["Education", "Poverty reduction", "Socioeconomic development"], |
|
"low_level_keywords": ["School access", "Literacy rates", "Job training", "Income inequality"] |
|
} |
|
#############################""", |
|
] |
|
|